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ABSTRACT

Aim We studied the gecko genus Ebenavia to reconstruct its colonization his-

tory, test for anthropogenic versus natural dispersal out of Madagascar, and

correlate divergence date estimates of our phylogeny with geological age esti-

mates of islands in the region.

Location Madagascar and surrounding islands of the Western Indian Ocean

(Comoros, Mayotte, Mauritius, Pemba).

Methods We reconstructed the phylogeny of Ebenavia covering its entire geo-

graphical range using a molecular data set of three mitochondrial and two

nuclear markers. We estimated divergence times based on calibrations using

(1) previously calculated mutation rates of mitochondrial markers, (2) a com-

bination of these rates with old or (3) young geological age estimates for some

of the islands inhabited by the genus, and (4) an independent data set with

fossil outgroup calibration points.

Results Ebenavia inunguis, one of two recognized species of the genus, com-

prises multiple ancient evolutionary lineages. The earliest divergence within this

complex (Miocene, 13–20 Ma; 95% credibility interval [CI]: 4–29 Ma) sepa-

rates the population of the Comoros Islands, excluding Mayotte, from all other

lineages. The age estimates for island lineages coincide with the geological age

estimates of the islands except for Grand Comoro, where the age of the local

clade (3–5 Ma; 95% CI: 2–7 Ma) significantly predates the estimated island age

(0�5 Ma). A clade from north Madagascar + Mayotte + Pemba is estimated to

have diverged from an eastern Malagasy clade in the Miocene.

Main Conclusions Our results suggest that Grand Comoro Island is geologi-

cally older than previously estimated. The islands of the Comoros and Pemba

were probably colonized via natural dispersal out of Madagascar (> 1000 km

in the case of Pemba). Mauritius was most likely colonized only recently from

eastern Madagascar via human translocation.
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Comoros, Madagascar, Mauritius, Mayotte, molecular clock, Pemba Island,
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INTRODUCTION

Charles Darwin (1859) already noted that reptiles were prime

examples for studying the colonization history of oceanic

islands by non-flying terrestrial animals. Their slow meta-

bolic rate compared to mammals, and their resilience to

desiccation and osmotic stress as compared to amphibians

are seen as pre-adaptations for the successful colonization of

new terrestrial habitats via overseas dispersal. Consequently,

many oceanic islands are rich in reptile species, but poor in

or devoid of amphibians and non-flying mammals (de

Queiroz, 2005). The ability to disperse across very large
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distances was demonstrated in particular for geckos (Car-

ranza et al., 2000; Gamble et al., 2008, 2011).

Overseas dispersal played a major role in biota assembly

across the Western Indian Ocean region (Vences et al., 2003;

Yoder & Nowak, 2006; Warren et al., 2010; Townsend et al.,

2011; Crottini et al., 2012; Samonds et al., 2012). Despite its

relatively low number of islands, the area comprises ancient

continental fragments of Gondwanan origin (Madagascar,

the granitic Seychelles), continental islands that were con-

nected with the mainland at low sea levels (the Zanzibar

Archipelago and islands off Madagascar), and oceanic

islands. The latter comprise most islands of the Seychelles

and the volcanic hotspot archipelagos of the Comoros and

Mascarenes. Age estimates exist for all major oceanic islands

(Montaggioni & Nougier, 1981; Emerick & Duncan, 1982;

Nougier et al., 1986; Saddul, 1995; see also Sheth et al.,

2003; Debeuf, 2009) and for the splits of Madagascar from

the African continent and of the Seychelles from Gondwana

and India (Plummer & Belle, 1995; Ali & Aitchison, 2008;

Collier et al., 2008; Gibbons et al., 2013). However, the ocea-

nic islands of the Western Indian Ocean lack true fossils

(Hume et al., 2011) and the Cenozoic animal fossil record of

Madagascar is particularly poor (Goodman & Benstead,

2003). Consequently, geological age estimates have been used

for the calibration of molecular clocks in many studies on

regional biota (Vences et al., 2003; Warren et al., 2003, 2005,

2006; Rocha et al., 2007; Fuchs et al., 2008; Crottini et al.,

2012).

The careful use of oceanic island age estimates for time-

tree calibration has the theoretical advantage of providing

maximum age constraints of relatively shallow divergences,

compared to fossils, which tend to provide minimum age

boundaries and are therefore mostly useful for deeper clades.

This approach has been challenged by several studies that

estimated clades of a variety of organisms being older than

the purported ages of the islands to which they are ende-

mic. The most prominent example is that of the Gal�apagos

islands, in which the divergence between island clades of

endemic iguanas (Rassmann, 1997) and weevils (Sequeira

et al., 2000) were estimated considerably older than the

archipelago on which they lived (see review in Parent et al.,

2008). Another well-known example among reptiles are the

native anoles of Barbados Island, whose age was estimated

to 5–6 million years ago (Ma), while the geological age of

Barbados was estimated to be c. 1 Ma (Thorpe et al., 2005).

Recently, a clade of stick insects endemic to the Mascarenes

was estimated to pre-date the age of the oldest extant island

of the group by 6–31 million years (Bradler et al., 2015).

However, it is still open to discussion how common such

‘rock versus clock’ discrepancies in volcanic islands are.

Some of the earlier studies were based only on mitochon-

drial DNA and assumptions on mutation rates that might

provide age overestimates (Grechko, 2013). More recent

studies have provided younger estimates for some of the

taxa involved (e.g. MacLeod et al., 2015, for Gal�apagos

iguanas).

The discrepancies between geological age estimates of

islands and age estimates for their endemic clades have

been reviewed by a number of authors (Heads, 2011; Hips-

ley & M€uller, 2014; Ho et al., 2015). Two plausible expla-

nations exist: first, the clade of the species in question is

actually older than the island it is endemic to, either

because its closest mainland relative has gone extinct after

the colonization event, or because the colonization took

place via stepping stones that today no longer exist (Ren-

ner et al., 2010). Second, the geological age estimates for

the island do not correctly reflect the time span available

for its colonization. Most geological age estimates of ocea-

nic islands are based on surface rocks that may be younger

than the age of first emergence of the island, for example,

if older volcanoes become active after a period of inactiv-

ity, whereas older and deeper layers of rock that would

allow correct age estimates are inaccessible for sampling

(Heads, 2011).

Stepping stones very likely existed in the Seychellean Arc

and along the R�eunion (Mascarenes) and Karthala

(Comoros) Hotspots in times of lower sea levels (Hijmans

et al., 2005; Miller et al., 2005; Warren et al., 2010; Strick-

land et al., 2013; see discussion for the Mascarenes in Bradler

et al., 2015), and many volcanoes are active today or were

repeatedly active until very recent geological times, which

may have biased geological dating attempts towards younger

age estimates (Emerick & Duncan, 1982).

The biogeography of the largest island, Madagascar, was

largely influenced by other factors. While as many as 18

biogeographical regions have been recognized on Madagas-

car (Wilm�e et al., 2006), the most pronounced distinctions

are those of the arid west versus the humid coastal east,

and of the north < 15° southern latitude versus the remain-

der of the island (Brown et al., 2014). Previous studies have

pointed out the existence of deeply divergent clades within

genera, species complexes, or species of vertebrates in the

Malagasy north (Boumans et al., 2007). Unlike the rest of

the islands, this region was under monsoon influence since

the end of the Mesozoic and, with changes in intensity,

mostly remained so during the Palaeogene (Wells, 2003;

Boos & Kuang, 2010; Buerki et al., 2013; Ohba et al.,

2016).

Our study focuses on Ebenavia inunguis Boettger, 1878; a

small nocturnal gecko that is relatively rarely seen but wide-

spread in Madagascar and the surrounding islands. It inhab-

its the north including Nosy Be Island, the east including

some offshore islets, and parts of the central highlands of

Madagascar. It is also found in all major islands of the

Comoros, in Mauritius, and Pemba Island. The origin of

these insular populations by human translocation versus nat-

ural dispersal has not been clarified so far. The second spe-

cies of the genus, E. maintimainty Nussbaum & Raxworthy,

1998, is known only from a small range around its type

locality in south-western Madagascar.

We here apply a newly sequenced, geographically compre-

hensive set of DNA sequences of E. inunguis to (1)
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reconstruct the phylogenetic relationships of regional clades

and estimate their divergence times, (2) test the hypothesis

that all populations of E. inunguis outside Madagascar origi-

nate from natural overseas dispersal, and (3) assess the fit of

the divergence time estimates with geological age estimates

of the islands in the Western Indian Ocean region.

MATERIALS AND METHODS

We included 52 samples of Ebenavia inunguis and two of E.

maintimainty in our dataset, representing altogether 31 local-

ities across the entire known distribution range of the genus.

From a further 20 samples and nine localities, only COI data

were available (see Appendix S2, Table S1).

A more detailed description of all methods used, including

additional analyses, is given in Appendix S1. We amplified

three mitochondrial gene fragments, 12S rRNA (12S), cyto-

chrome C oxidase subunit 1 (COI), and cytochrome b

(CYTB), and two nuclear fragments, the recombination acti-

vating gene 2 (RAG2) and the prolactin receptor (PRLR),

resulting in a data set of 2,251 bp. All PCR protocols follow

Hawlitschek et al. (2012) and Hawlitschek & Glaw (2013).

For a subset of specimens we also amplified the recombina-

tion activating gene 1 (RAG1) and brain-derived neu-

rotrophic factor (BDNF) following the protocols of Crottini

et al. (2012). Data were submitted to BOLD (process IDs

EBINU001–15 to 064–15) and GenBank (accession numbers

LT591928 to LT592132).

We conducted Bayesian inference analyses on the aligned

and partitioned data set in MrBayes 3�2�0 (Ronquist et al.,

2012) with two runs and four chains with 100,000,000 gener-

ations. Furthermore, we included the 20 samples for which

only COI was available in a separate Mrbayes COI tree. In

addition, we conducted maximum likelihood analyses of the

concatenated data set with 1000 bootstrap replicates in

raxmlGUI 1�0 (Stamatakis, 2006; Silvestro & Michalak,

2012).

In order to independently assess molecular dating results,

five specimens were chosen to represent the major clades

retrieved in our main phylogenetic analyses. RAG1 and

BDNF sequences of these specimens were added to the origi-

nal alignment of Crottini et al. (2012).

We employed four dating strategies, one of them based on

a completely independent set of molecular data and calibra-

tion framework, for estimating the divergence times within

Ebenavia. The goal of this approach was the cross-validation

of our calibration methods to assess the accuracy of our dat-

ing results (see Near et al., 2005). We used beast 1�8�1
(Drummond et al., 2012) with our main data set. The

MrBayes topology was fixed as the starting tree. We

assumed an uncorrelated relaxed clock model for all parti-

tions and conducted runs both under a Yule and a birth-

death model. We used substitution rates inferred from the

phylogenies of geckos from the Canary Islands (Carranza &

Arnold, 2012). BEAST analyses were run for 75,000,000 gen-

erations, sampling every 100 generations. Log files were

checked for convergence of model parameters as indicated by

effective sample sizes (ESS) > 200 in tracer v1�5 (http://

beast.bio.ed.ac.uk/Tracer).

We used a number of geological age estimates for the

Comoros Islands with considerable variation between older

and younger estimates for the calibration of our divergence

time estimates with three strategies: (1) No calibration

points, dating based exclusively on the substitution rates of

12S and CYTB. (2) Calibration of Ebenavia lineages from

Mayotte (15 Ma), Moh�eli + Grand Comoro (age of Moh�eli:

5�0 Ma), and Anjouan + Moh�eli + Grand Comoro (age of

Anjouan: 11�5 Ma), based on the estimates of the oldest pos-

sible geological ages (Montaggioni & Nougier, 1981; Nougier

et al., 1986), and the age of Mauritius (8�3 Ma; Sheth et al.,

2003). (3) Same as (2), but using the geological age estimates

of Emerick & Duncan (1982) based on the oldest surface

lavas of the Comoros (Mayotte: 5�4 Ma, Moh�eli: 2�81 Ma,

Anjouan: 3�5 Ma).

A divergence time dating analysis was also conducted with

the RAG1 and BDNF data set using Multidivtime (Thorne

& Kishino, 2002). This data set contains representatives of all

major vertebrate groups from Madagascar and numerous

outgroups, allowing a molecular dating analysis with as many

as 48 cross-validated age constraints across the vertebrate tree

of life. We implemented these constraints and all other ana-

lytical settings as Crottini et al. (2012); the only difference to

the published analytical protocol was the inclusion of five

additional Ebenavia terminals.

Finally, we conducted reconstructions of the ancestral

areas of the major clades and subclades of Ebenavia using

the R package ‘BioGeoBEARS’ (Matzke, 2013; Appendix S1).

RESULTS

A more detailed description of all results is given in

Appendix S1. Ebenavia maintimainty was recovered as the

sister group to the E. inunguis complex (Fig. 1). This com-

plex contained three major and largely allopatric clades: (A)

The Comoros clade, comprising samples from the Comoros

islands of Anjouan, Moh�eli and Grand Comoro, recovered as

the sister group to all other clades; (B) The north clade,

including samples from localities in the very north of Mada-

gascar and also from the islands of Mayotte (Comoros

Archipelago) and Pemba (Zanzibar Archipelago off Tanza-

nia); and (C) the east clade with samples from most of

Madagascar’s east coast and Sambirano region including the

offshore island of Nosy Be, but excluding north Madagascar.

The east clade is further subdivided into three subclades:

(Ca) comprising samples from higher elevations of east

Madagascar; (Cb) with a sample from Nosy Be; and (Cc)

comprising all other east coast lowland samples. Additional

samples are placed in these clades in the MrBayes COI tree

(Fig. 2)

Divergence time estimates derived from our five-gene-frag-

ment data set in beast and the Multidivtime analyses are

provided in (Table 1). They indicate ancient divergences
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among the main clades within E. inunguis. The mean diver-

gence age between the two species of Ebenavia, across the

different analyses, was estimated between 21�7 and 26�3 Ma

(95% credibility interval: 12�33–36�80 Ma), whereas the old-

est divergence within E. inunguis was recovered at 13–20 Ma

(95% CI: 5–29 Ma). beast estimates of this split are about

16–20 Ma (95% CI: 11–27), whereas Multidivtime esti-

mated a slightly younger age and a wide credibility interval

of 13 Ma (95% CI: 5–29). The Multidivtime analysis based

on the RAG1 and BDNF data set yielded results largely com-

patible with those from the BEAST analysis.

The results of the ancestral area reconstructions are given

in Appendix S3, Table S2. Madagascar is recovered as the

most probable ancestral area for the entire Ebenavia inunguis

complex under the DEC+j and BAYAREAlike+j models,

whereas DIVAlike+j recovers the Comoros. The latter model

scores best, albeit only with a marginal difference, in all

model tests.

DISCUSSION

The age of Grand Comoro: molecular clock versus

geological dating

Notably, the most basal split within the Ebenavia inunguis

complex separates the clade inhabiting the Comoros except

Mayotte from all other clades. Our age estimates coincide with

or even pre-date the oldest proposed geological age of Mayotte

(15 Ma), the oldest extant island of the Comoros Archipelago

(Montaggioni & Nougier, 1981). This suggests that the

Comoros clade may have colonized the oldest extant island

immediately after its emergence, or that it had already existed
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on older islands that are now submerged. The seamounts of

the Geyser Bank and the Leven Bank are located between the

extant islands of the Comoros and Madagascar and, based on

their bathymetry, must have been exposed during periods of

sea level regression, such as those of the Pleistocene glaciations,

but very likely also at earlier times (Rohling et al., 2014). They

might have provided stepping stones between Madagascar and

the present-day Comoros (Fig. 1).

Dispersal from Madagascar to the Comoros is favoured by

the direction of marine currents. The South Equatorial Cur-

rent, coming from the East, passes the northern tip of Mada-

gascar and continues to the Comoros (Louette et al., 2004;

Carton & Giese, 2008); this circulation pattern was probably

active since ca. 35 Ma and therefore covers the geological

time span relevant to Ebenavia (Ali & Huber, 2010; Town-

send et al., 2011; Tolley et al., 2013). Consequently, much of

the Comoran biota, particularly reptiles, is of Malagasy

ancestry (e.g. Rocha et al., 2007; Hawlitschek et al., 2012;

Hawlitschek & Glaw, 2013). Surprisingly, our ancestral area

reconstruction (Appendix S1 and Appendix S3, Table S2)

does not unambiguously support a Malagasy origin of the

extant lineages of the E. inunguis complex; instead, the most

highly supported model (DIVAlike+j) favours a Comoran

origin, which would mean that the ancestors of the Malagasy

clades of this complex had colonized Madagascar from the

Comoros. At first sight, this scenario seems much less
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probable than the colonization of the Comoros from a Mala-

gasy source population which also gave rise to the extant

E. inunguis clades of Madagascar. However, some likely cases

of the re-colonization of mainland areas from islands are

known (Nicholson et al., 2005; Bellemain & Ricklefs, 2008),

and our example reminds us that apparently obvious biogeo-

graphical explanations may be complicated by our lack of

knowledge on palaeocurrents, stepping stones, and extinction

events.

Within the Comoros clade, our divergence time estimates

of the island populations coincide with the geological age

estimates for Anjouan (divergence 4�3 Ma; oldest island age

estimate 11�5 Ma, based on oldest surface lavas 3�5 Ma) and

Moh�eli (divergence 3�6 Ma; oldest island age estimate 5 Ma,

based on oldest surface lavas 2�81 Ma) (Montaggioni & Nou-

gier, 1981; Emerick & Duncan, 1982; Nougier et al., 1986).

We see this agreement as support of our strategy of calibra-

tion and cross-validation. Despite local disagreements

between individual gene trees versus haplotype networks (see

also Appendix S1 and Appendix S3) and evidence for haplo-

type sharing between lineages the clade age estimates for

these islands support the robustness of our calibration.

In contrast to Anjouan and Moh�eli, we find a strong dis-

crepancy between estimated clade and island age in the lineage

of the youngest and volcanically still active island Grand

Comoro. The oldest geological age estimate for the island is

0�5 Ma, whereas the split between the Grand Comoro and

Moh�eli populations is dated at ca. 3–5 Ma (95% CI: 2–7 Ma).

Even the average estimated divergence between the two haplo-

types sampled from Grand Comoro is 0�2 Ma (95% CI: 0�04–
0�53 Ma), which is older than many geological age estimates

for the island, for example, of 0�13 � 0�02 Ma by Emerick &

Duncan (1982). The youngest estimated island age is

0�01 � 0�01 Ma (Hajash & Armstrong, 1972), which is even

lower than the lowest border of our credibility interval.

One potential biogeographical explanation for the ancient

age of the endemic Grand Comoro lineage is that this lineage

may have previously existed elsewhere. It might have colo-

nized Grand Comoro only recently by way of stepping stone

islands on which it finally became extinct. Indications for the

extinction and re-colonization of Comoran islands by reptiles

exist (Hawlitschek & Glaw, 2013). However, Ebenavia is not

the only case in which the divergence between Grand

Comoro and other Comoran populations, as well as the

genetic diversity within Grand Comoro, point to an older

age than geologically estimated. This is the case in chame-

leons (Rocha et al., 2005a; Tolley et al., 2013), day geckos

(Rocha et al., 2007), snakes (Hawlitschek et al., 2012), and

ground geckos (Hawlitschek & Glaw, 2013). Pasquet et al.

(2007) found that the inclusion of the age of Grand Comoro

as a calibration point for the divergence time estimates of

drongo birds (Dicruridae) led to much younger overall age

estimates compared to other calibration patterns, and that

the Grand Comoro clade of these birds was significantly

older than 0�5 Ma. If the hypothesis that all these popula-

tions existed elsewhere before colonizing Grand Comoro was

true, at least some survivors might still be expected to live

on other extant islands in sympatry with divergent endemic

clades. Also, the question arises why exactly Grand Comoro

and none of the other islands of the archipelago functions as

a refuge for old clades.

Incorrect geological age estimates for Grand Comoro pro-

vide an alternative and rather plausible explanation for the

old age of the Grand Comoro lineage. All geological age esti-

mates for the island are based on rocks exposed on the sur-

face of the island (Emerick & Duncan, 1982). These surface

rocks might cover older volcanic rocks that might provide

older and more reliable age estimates, but they are often

inaccessible to geologists. Grand Comoro consists of two vol-

canoes, the young and active Karthala and the older and

now inactive La Grille. Most surface rocks are of Karthala

origin, and also La Grille had probably been active and pro-

ducing surface lavas long after the origin of Grand Comoro.

Such events have often not been taken into account in stud-

ies on geological age estimates, although most geologists are

aware that the mechanisms of the formation of volcanic

islands are still poorly understood (Sherrod, 2009). Grand

Comoro thus provides a clear example for the caveats con-

nected to geological calibration points in molecular clock

studies.

Extinction and re-founding of island populations

The situation of Ebenavia in the Comoros is further compli-

cated by the fact that the oldest island Mayotte is not inhab-

ited by E. inunguis of the Comoros clade (clade A), but by

the Malagasy north clade (clade B). A similar situation was

detected in Paroedura ground geckos (Hawlitschek & Glaw,

2013), where the lineage from the Comoros except Mayotte

is the sister group to the lineage comprising species from

Madagascar and Mayotte. It is unknown in both examples

whether Mayotte was ever successfully colonized by the same

clade that colonized the remaining islands of the archipelago.

If this was the case, the earlier populations either became

extinct after being out-competed by the later colonizers or a

local extinction event exterminated the populations on May-

otte and made way for a new colonization from Madagascar.

Potential evidence for the extinction hypothesis is provided

by the active volcanism of the Karthala Hotspot, by geologi-

cally recent eruptions also on the older islands (Nougier

et al., 1986; Debeuf, 2009), and by indications of extinction

events also on other islands of the archipelago (e.g. Anjouan:

Hawlitschek & Glaw, 2013). If the earlier colonizers were

out-competed instead of being wiped out by a catastrophic

event, then remnants of the Comoros clade might still be

found in the genome of the extant population of Mayotte.

Neither mtDNA nor the nuclear markers studied provide

any indication for such a scenario, as was also shown for

Paroedura (Hawlitschek & Glaw, 2013). However, the rela-

tively small genetic data set typically used in biogeographical

studies, such as ours, may be insufficient to trace these

genetic remnants. In either case, the short geographical
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distance between Madagascar and Mayotte, and the direction

of the marine currents, may have allowed the relatively fast

re-colonization of Mayotte.

The recent colonization of islands out of Madagascar

Outside of Madagascar Ebenavia inunguis inhabits not only

the Comoros, but also the islands of Mauritius and Pemba.

The least divergent island population is that of Mauritius,

which is phylogenetically nested within the east coast low-

land subclade (Cc) and very closely related to a COI haplo-

type from Ivoloina (Appendix S3, Fig. S2, S3), close to a

major shipping centre to Mauritius. The earliest dated Ebe-

navia records in Mauritius are from 1948 when the species

was collected in Moka (Vinson & Vinson, 1969), located

c. 6 km from the port of Mauritius’ capital Port Louis. These

data strongly suggest that the Mauritian population of Ebe-

navia goes back to passive human translocation of at least

several females, as is the case for many other reptile species

of the Western Indian Ocean region (Rocha et al., 2005b,

2007, 2010). The introduction might have been conducted

via shipping traffic from Toamasina to Port Louis. This view

is supported by the present-day direction of marine currents

between Madagascar and Mauritius, which do not favour

dispersal in this direction (Cheke & Hume, 2008). Further-

more, Ebenavia still has a relatively patchy distribution on

Mauritius, often near urban areas (NC, unpublished data),

which is in agreement with a recent introduction.

On Pemba Island, E. inunguis is reported from two local-

ized populations in the north and south (Pakenham, 1983),

suggesting a wider distribution around the island. The

divergence between the Pemba population and its closest

relative in the north Clade is dated at c. 2–3 Ma (95% CI:

1–4 Ma). The age of the clade strongly supports the view of

a natural long-distance overseas dispersal (> 1000 km) from

north Madagascar, Mayotte, or from one of the sunken

stepping stone islands between Madagascar and the

Comoros. We cannot rule out the possibility that the

Pemba individuals were translocated from an unsampled

population in north Madagascar or Mayotte. Our ancestral

area reconstructions are not informative on this event.

However, the possibility that the observed patterns are the

result of natural dispersal from Madagascar is supported by

prevailing marine currents and is demonstrated in the par-

allel example of Phelsuma parkeri, a gecko endemic to

Pemba Island whose sister species inhabits north Madagas-

car (Rocha et al., 2007, 2009).

Evolutionary steps towards east–west-vicariance in

Madagascar

According to our phylogenetic reconstruction, Ebenavia fol-

lows a common pattern of Malagasy biogeography with the

most ancient divergence between E. maintimainty in the arid

south-west and the E. inunguis complex distributed mainly

in the humid east (Boumans et al., 2007). Most native

reptiles colonized the Comoros from north-west or north

Madagascar (Hawlitschek & Glaw, 2013; Hawlitschek et al.,

2016). In Ebenavia, this might indicate an initial split

between the south-west and north-west/north with subse-

quent dispersal to the Comoros, lineage diversification in the

north and finally the east, a pattern similar to that found in

Phelsuma day geckos (Gehring et al., 2013).

CONCLUSIONS

The deep divergences, old divergence time estimates, and the

geographical isolation of some populations within Ebenavia

inunguis support the view of a species complex. However,

species delimitation and taxonomic revision are beyond the

scope of this paper and will be addressed elsewhere.

The discrepancy between the molecular dating of Ebenavia

versus geological age estimates of Grand Comoro provides a

clear example of how uncertainties in the dating of volcanic

islands, as well as a lack of data on stepping-stones and pos-

sible past extinction events, may complicate molecular dat-

ing. At the same time, the coincidence of our divergence

time estimates of endemic Ebenavia lineages of other islands

with the corresponding island age estimates shows that if

properly cross-validated, geological age estimates of oceanic

islands can provide reliable biogeographical calibration

points for divergence time dating.
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