

Biogeography of Australasian flightless weevils (Curculionidae, Celeuthetini) suggests permeability of Lydekker's and Wallace's Lines

EMMANUEL F. A. TOUSSAINT, RENE TÄNZLER, CAHYO RAHMADI, MICHAEL BALKE & ALEXANDER RIEDEL

Submitted: 17 April 2015

Accepted: 4 June 2015

doi:10.1111/zsc.12127

Toussaint EFA, Tänzler R, Rahmadi C, Balke M, Riedel A. (2015). Biogeography of Australasian flightless weevils (Curculionidae, Celeuthetini) suggests permeability of Lydekker's and Wallace's Lines. —*Zoologica Scripta*, **44**, 632–644.

The Indo-Australian region was formed by the collision of the Australian and Asian plates, and its fauna largely reflects this dual origin. Lydekker's and Wallace's Lines represent biogeographic transition boundaries between biotas although their permeability through geological times was rarely assessed. Here, we explore the evolutionary history of flightless weevils of the tribe Celeuthetini in this geologically highly complex region. We generated a DNA sequence data set of 2236 bp comprising two nuclear and two mitochondrial markers for 62 species of the Indo-Australian tribe Celeuthetini. We used Bayesian Inference and Maximum Likelihood to reconstruct the first molecular phylogeny of the group. Based on this phylogenetic tree, we employed the program BioGeoBEARS to infer the biogeographical history of Celeuthetini in the region. The group's radiation begun east of Wallace's Line, probably during the mid-Eocene. We unveil multiple transgressions of Lydekker's and Wallace's Lines mostly during the Miocene with a significant role of founder-event speciation. The phylogeny of Celeuthetini is geographically highly structured with the first lineages occurring in New Guinea and the Moluccas, and a deep divergence between two clades largely confined to Sulawesi and their respective sister clades of the Lesser Sunda Islands. Wallace's Line was crossed once from Sulawesi and three times from the Lesser Sunda Islands to Java whilst Lydekker's Line was crossed once from New Guinea to the Moluccas. Although this beetle group shows extensive local diversification with little dispersal, the biogeographical demarcations of the Australasian region appear to have been rather porous barriers to dispersal.

Corresponding author: Alexander Riedel, State Museum of Natural History Karlsruhe (SMNK), Erbprinzenstr. 13, D-76133 Karlsruhe, Germany. E-mail: riedel@smnk.de

Emmanuel F. A. Toussaint, Division of Entomology, Department of Ecology & Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, KS, USA and SNSB – Zoologische Staatssammlung, Münchhausenstr. 21, D-81247, München, Germany E-mail: emmanuel.touss1@gmail.com

Rene Tänzler, SNSB – Zoologische Staatssammlung, Münchhausenstr, 21, D-81247, München, Germany. E-mail: rene.taenzler@gmail.com

Cahyo Rahmadi, Division of Zoology, RC-Biology, Cibinong Science Center – LIPI, Jl. Raya Jakarta- Bogor Km. 46, Cibinong, 16911 Indonesia. E-mail: cahyo.rahmadi@gmail.com

Michael Balke, SNSB – Zoologische Staatssammlung, Münchhausenstr, 21, D-81247, München, Germany. E-mail: Coleoptera-ZSM@zsm.mwn.de

Introduction

The Indo-Australian Archipelago (IAA) has fascinated biologists ever since Alfred R. Wallace suspected geological history might explain seemingly complex distribution patterns across the archipelago (Wallace 1869). He was also the first to realize

that the distribution of many taxa follows lines of shallow seas along the Asian Sunda Shelf and the Australian Sahul Shelf (Wallace 1860). One of the most famous biogeographical transitions was named after him (Huxley 1868), and the region between 'Wallace's Line' in the west and Lydekker's Line

(Lydekker 1896) in the east is today known as 'Wallacea', faunistically a melting pot of Oriental and Australian biota.

Generations of biogeographers have sought to understand patterns and processes behind the incredible biodiversity of the IAA with respect to its intricate geological history, leading towards integrative approaches involving biology, geology and geography (Hall 2002, 2012, 2013; Lohman *et al.* 2011; Brown *et al.* 2013; Toussaint *et al.* 2014). The region was subdivided into various areas of endemism (Turner *et al.* 2001; Brown *et al.* 2006), and examples for specific clades originating either in the west or the east are comparably well documented (Stelbrink *et al.* 2012; Webb & Ree 2012; Klaus *et al.* 2013). However, large-scale molecular phylogenies covering the entire IAA remain rare. Thus, the direction and frequency of dispersal events and the modes of biotic exchange between islands are not well understood (Lohman *et al.* 2011; Webb & Ree 2012). In general, biogeographical lines seem to be rather porous for plants with a higher proportion of dispersals from west to east than the opposite direction (Crayn *et al.* 2015). In *Begonia*, Thomas *et al.* (2012) document west to east dispersal and rapid diversification in Wallacea and New Guinea; wax plants (*Hoya*) also originated in south/South-East Asia and then colonized the IAA and eventually Australasia (Wanntorp *et al.* 2014).

Recently, comprehensive studies, however, helped to reveal a variety of ecologically different animals having crossed the lines. Peacock swallowtail butterflies with great flight capability colonized the Oriental and Australasian regions out of the Sunda-Wallacea region (Condamine *et al.* 2013), while *Delias* butterflies probably originated on the Australian plate periphery with Wallacea as an important area of their early radiation (Müller *et al.* 2013). Animals with less obvious over-seawater chance dispersal ability include fanged frogs that originated in SE Asia and spread across the IAA, with frequent exchange between Borneo, the Philippines and Sulawesi, crossing Wallace's and Huxley's Lines (Evans *et al.* 2003). Flightless *Trigonopterus* weevils crossed Wallace's Line three times to reach Bali from the east (Tänzler *et al.* 2014). The widespread diving beetle *Rhantus suturalis* also crossed Wallace's Line to colonize most of the Palearctic region out of New Guinean highlands in the Quaternary (Balke *et al.* 2009; Toussaint *et al.* 2013).

Two tribes of the megadiverse weevil subfamily Entiminae are almost entirely restricted to the IAA, that is the Pachyrrhynchini and the Celeuthetini. While both are extremely diverse with hundreds of species in the Philippines, Wallacea and Melanesia, they are almost absent from the neighbouring Asian and Australian shelf regions. Apparently, their evolution was largely staged in the emerging IAA. Species of both tribes are apterous, limiting

their abilities of dispersal and boosting microendemism (Marshall 1956).

The Celeuthetini are less known than the Pachyrrhynchini, which are often found in ornamental display boxes of tropical insects. Nevertheless, Celeuthetini are an equally colourful and morphologically diverse group, and the long dorsolateral elytral extensions of some genera appear almost unreal. Marshall (1956) provides an excellent overview of the group and delineates it from other apterous entimine tribes, the Elytrurini and the Rhyncogonini. The monophyly of Celeuthetini appears plausible based on morphological characters such as the abbreviated metanepisternal suture. Their range extends from their area of highest diversity in Wallacea and Melanesia to the islands of Fiji and Samoa in the east; Taiwan and some southern Japanese islands are reached in the north (Alonso-Zarazaga & Lyal 1999); in Australia, only few species of Papuan affinities occur around Torres Strait (Pullen *et al.* 2014); few species are found in Borneo and Java (Marshall 1956), while the group is entirely absent from Sumatra and continental Asia. The majority of described species live on foliage and some are agricultural pests (Wesis *et al.* 2010). A large number of mostly unnamed species dwell the leaf litter, and some have fully reduced eyes as a consequence of their edaphic lifestyle. While many of the named species and genera have been described during the colonial era (e.g. Faust 1897; Heller 1900; Marshall 1956; Tanner 1969), the tribe seems to have fallen into obscurity in subsequent years. Few taxonomic revisions have treated selected genera (Thompson 1977; Riedel & Schönitzer 1996), but no attempts have been made to revise the confused generic classification.

Here, we use a representative sampling of species from across the IAA to (i) present the first phylogenetic inference for the tribe Celeuthetini, (ii) provide a temporal framework for the evolution of this group using a Bayesian relaxed clock to infer divergence time estimates and (iii) rely on the latest models to reconstruct the biogeographical history of the group and investigate the permeability of Wallace's and Lydekker's Lines to these flightless tropical weevils.

Materials and methods

Taxon sampling and molecular biology

We sampled 62 Celeuthetini species from New Guinea, the Moluccas, Sulawesi, Java and the Lesser Sunda Islands (Table 1). Five outgroup representatives belong to two other tribes of Entiminae from the same region, that is Ottistirini and Pachyrrhynchini. Celeuthetini and Pachyrrhynchini are closely related and presumably sister groups based on morphological characters and our preliminary molecular analyses covering a larger number of entimine tribes. Species were selected to cover a range of lifestyles

and habitats as well as the morphology-based species groups we defined based on studies of museum collections. Specimens were identified using the taxonomic literature, and in many cases names were verified by comparison with type material deposited in the museums of Dresden and London. Nomenclature follows Alonso-Zarazaga & Lyal (1999). Total genomic DNA was extracted non-destructively from whole beetles using the DNeasy kit (Qiagen, Hilden, Germany): the specimens preserved in absolute ethanol were opened at the prothorax–mesothorax joint before tissue lysis, retrieved after extraction and dry-mounted as collection vouchers. They are currently deposited at the State Museum of Natural History Karlsruhe (Germany); some will later be transferred to LIPI Research Center of Biology – Division of Zoology, Cibinong (Indonesia). We used standard PCR protocols (see Appendix S1) to amplify and then sequence the following gene fragments: cytochrome c oxidase subunit 1 (657 bp), 16S rRNA (511 bp), 18S (385 bp) and arginine kinase (683 bp). Sequences were edited using Sequencher v. 4.9 (GeneCodes Corp., Ann Arbor, MI, USA). Protein-coding genes were aligned and reading frames checked with MEGA 6 (Tamura *et al.* 2013). The non-coding genes 16S and 18S were aligned in MAFFT version 7 (Katoh & Standley 2013) using the Q-INS-i method, which considers the secondary structure of RNA. The different data sets used to infer phylogenetic relationships were generated in Sequence Matrix 1.7.2 (Meier *et al.* 2006). Sequences were deposited at European Nucleotide Archive (EMBL accession numbers LN866322–LN866564).

Molecular phylogenetics

We used Bayesian inference (BI) and maximum likelihood (ML) to reconstruct phylogenetic relationships using a concatenated data set. The partitions and corresponding optimal models of substitution were searched under PARTITIONFINDER 1.1.1 (Lanfear *et al.* 2012) using the ‘greedy’ algorithm, either the ‘mrbayes’ or ‘raxml’ set of models, and the Akaike information criterion corrected (AICc) to compare the fit of the different models. The BI analyses were performed using MRBAYES 3.2.2 (Ronquist *et al.* 2012). Instead of selecting the substitution models *a priori* based on the results of PartitionFinder, we used the different partitions recovered but used reversible-jump Metropolis-coupled Markov chain Monte Carlo (MCMC) to explore the entire space of substitution models (Huelsnbeck *et al.* 2004). Two simultaneous and independent runs consisting of eight MCMC (one cold and seven incrementally heated) running 30 million generations were used, with a tree sampling every 5000 generations to calculate posterior probabilities (PP). To investigate the convergence of the runs, we investigated

the split frequencies and effective sample size (ESS) of all the parameters and plotted the log-likelihood of the samples against the number of generations in TRACER 1.5 (<http://BEAST.bio.ed.ac.uk/Tracer>). A value of $ESS > 200$ was acknowledged as a good indicator of convergence. All the trees that predated the time needed to reach a log-likelihood plateau were discarded as burn-in, and the remaining samples were used to generate a 50% majority rule consensus tree. The ML analyses were conducted with the best partitioning scheme selected in PARTITIONFINDER 1.1.1 (Lanfear *et al.* 2012) using RAxML (Stamatakis 2006). We used the AutoFC option in RAxML to calculate the optimal amount of bootstrap (BS) replicates, which indicate the level of support at each node. A calculated $PP \geq 0.95$ or a $BS \geq 70$ was considered to indicate strong support for a given clade (Hillis & Bull 1993; Erixon *et al.* 2003).

Divergence time estimation

Divergence times were inferred with the BEAST 1.8.0 (Drummond *et al.* 2012). The partitions and models of nucleotide substitution were selected under PARTITIONFINDER 1.1.1 (Lanfear *et al.* 2012) using the ‘greedy’ algorithm, the ‘beast’ set of models and the AICc. We tested the hypothesis of molecular clock for both data sets using PAUP* (Swofford 2003), and as it was significantly rejected ($P < 0.001$), we used a Bayesian relaxed clock allowing rate variation among lineages as implemented in BEAST. To calibrate the tree, we used a substitution rate calculated for tenebrionid mitochondrial genes in Papadopoulou *et al.* (2010) based on a geological calibration. To account for uncertainty, we used a uniform prior encompassing the credibility interval calculated for both CO1 and 16S (i.e. 0.0131 ± 0.0013). Two runs performed under a birth–death process consisted of 30 million generations sampled every 1000 generations. The convergence of the runs was investigated using ESS, a conservative burn-in of 25% was applied after checking the log-likelihood curves, and the different runs were merged using LOGCOMBINER 1.8.0 (Drummond *et al.* 2012). The maximum credibility tree, median ages and their 95% highest posterior density (HPD) were generated afterwards under TREEANNOTATOR 1.8.0 (Drummond *et al.* 2012).

Ancestral range reconstruction

We used BIOGEOBEARS (Matzke 2013a) as implemented in R to infer the biogeographical history of Celeuthetini weevils across most of their range of distribution. This program allows reconstruction of the biogeographical history of a clade under different models such as DEC (Ree *et al.* 2005; Ree & Smith 2008), DIVA (Ronquist 1997) or BayArea (Landis *et al.* 2013). Additionally, it implements a parame-

Table 1 Taxon sampling. Overview of the specimens used in this study, their voucher identification number, classification, collecting locations and gene fragments used in the data set. Successful sequencing of a gene fragment is indicated (by +) for each species

Voucher ID	Tribe	Genus	Species	Author	Locality	CO1	AK	18S	16S
ARC3434	Celeuthetini	<i>Albertisius</i>	<i>excellens</i>	(Faust)	PNG, Central Prov., Moroka area, Kailaki, Beremutana ridge	+	+	+	+
ARC3550	Celeuthetini	<i>Apicalodes</i>	<i>wegneri</i>	Voss	Flores Isl., Ruteng, Gn. Ranaka	+	+	+	+
ARC3441	Celeuthetini	<i>Apicalus</i>	<i>ebrius</i>	Faust	PNG, Morobe Prov., Huon peninsula, mountain SW Pindiu	+	+	+	+
ARC3410	Celeuthetini	<i>Apotomoramphus</i>	sp 2		S-Sulawesi, Pc. Palopo, Gn. Sampuna	+	+	+	+
ARC3424	Celeuthetini	<i>Apotomoramphus</i>	sp 1		S-Sulawesi, Selayar Isl., Pagarangan	+	+	+	+
ARC3562	Celeuthetini	<i>Apotomoramphus</i>	sp 3		N-Sulawesi, Tomohon, Rurukan, Gn. Mahawu	+	–	+	+
ARC3565	Celeuthetini	<i>Atactoglymma</i>	sp 1		N-Sulawesi, Kotamobagu, Matalibaru	+	+	+	+
ARC3413	Celeuthetini	<i>Coptorhynchus</i>	sp pr <i>niger</i>	Günther	S-Sulawesi, Tanah Toraja, Bittuang, Gn. Karoa	+	+	+	+
ARC3416	Celeuthetini	<i>Coptorhynchus</i>	sp		S-Sulawesi, Gn. Lompobattang, Malakaji, Parambintolo	+	+	+	+
ARC3418	Celeuthetini	<i>Coptorhynchus</i>	sp pr <i>subtilis</i>	Faust	S-Sulawesi, Tanah Toraja, Rantepao, Gn. Karre (= Gn. Wokim)	+	+	+	+
ARC3421	Celeuthetini	<i>Coptorhynchus</i>	sp 1		S-Sulawesi, Tanah Toraja, Ponding, Baruppu	+	+	+	–
ARC3436	Celeuthetini	<i>Coptorhynchus</i>	<i>ternatensis</i>	Guérin-Méneville	N-Maluku, Ternate Isl., Marikurubu, Gn. Gamalama	+	+	+	+
ARC3431	Celeuthetini	Gen 1	sp 1		W-PAPUA, Jayawijaya Reg., Jiwika, Kurulu	+	+	+	+
ARC3432	Celeuthetini	Gen 2	sp 1		W-PAPUA, Jayawijaya Reg., Jiwika, Kurulu	+	+	+	+
ARC3427	Celeuthetini	Gen 3	sp 1		W-PAPUA, Jayapura Reg., Cyclops Mts., Doyo	+	+	+	+
ARC3426	Celeuthetini	Gen 4	sp 1		W-PAPUA, Jayapura Reg., Sentani, Cyclops Mts.	+	+	+	+
ARC3422	Celeuthetini	Gen 5	sp 1		S-Sulawesi, Tanah Toraja, Ponding, Baruppu	+	+	+	+
ARC3423	Celeuthetini	Gen 5	sp 2		S-Sulawesi, Tanah Toraja, Ponding, Baruppu	+	+	+	+
ARC3415	Celeuthetini	Gen 6	sp 1		S-Sulawesi, Tanah Toraja, Ponding, Baruppu	+	+	+	+
ARC3566	Celeuthetini	Gen 7	sp 1		N-Sulawesi, Kotamobagu, Matalibaru	+	+	+	+
ARC3411	Celeuthetini	Gen 8	sp 1		S-Sulawesi, Tanah Toraja, Bittuang, Gn. Karoa	+	+	+	+
ARC3412	Celeuthetini	Gen 8	sp 2		S-Sulawesi, Tanah Toraja, Bittuang, Gn. Karoa	+	+	+	+
ARC3420	Celeuthetini	Gen 8	sp 3		S-Sulawesi, Tanah Toraja, Rantepao, Gn. Karre (= Gn. Wokim)	+	+	+	+
ARC3429	Celeuthetini	<i>Guineobius</i>	<i>baliensis</i>	Riedel	W-PAPUA, Jayawijaya Reg., Jiwika, Kurulu	+	–	+	+
ARC3430	Celeuthetini	<i>Guineobius</i>	<i>niger</i>	Riedel	W-PAPUA, Jayawijaya Reg., Jiwika, Kurulu	+	+	+	–
ARC3409	Celeuthetini	<i>Heteroglymma</i>	<i>heteroglymmoides</i>	(K. Günther)	S-Sulawesi, Pc. Palopo, Gn. Sampuna	+	–	+	+
ARC3560	Celeuthetini	<i>Heteroglymma</i>	<i>biramosa</i>	Motschulsky	N-Sulawesi, Tomohon, Rurukan, Gn. Mahawu	+	–	+	+
ARC3561	Celeuthetini	<i>Heteroglymma</i>	<i>cimex</i>	Heller	N-Sulawesi, Tomohon, Rurukan, Gn. Mahawu	+	–	+	+
ARC3563	Celeuthetini	<i>Heteroglymma</i>	<i>albicans</i>	Heller	N-Sulawesi, Tomohon, Rurukan, Gn. Mahawu	+	–	+	+
ARC3567	Celeuthetini	<i>Heteroglymma</i>	sp pr <i>biramosa</i>	Motschulsky	N-Sulawesi, Kotamobagu, Matalibaru	+	–	–	+
ARC3568	Celeuthetini	<i>Heteroglymma</i>	sp 2		N-Sulawesi, Kotamobagu, Modoinding, Lake Moat area	+	–	+	+
ARC3569	Celeuthetini	<i>Heteroglymma</i>	sp 1		N-Sulawesi, Kotamobagu, Modoinding, Lake Moat area	+	+	+	+
ARC3546	Celeuthetini	<i>Javaulius</i>	<i>Pr rufus</i>	Marshall	C-Java, N slopes of Dieng plateau, Gn. Deles, Petungkriyono	+	+	+	+
ARC3548	Celeuthetini	<i>Javaulius</i>	sp 2		E-Java, Gn. Arjuno, road Batu – Pacet, Cangar	+	+	–	+
ARC3549	Celeuthetini	<i>Javaulius</i>	sp 1		E-Java, Krucil, Bremi, Gn. Argopuro (trail to Taman Hidup)	–	+	+	+
ARC3559	Celeuthetini	<i>Javaulius</i>	sp 3		Flores Isl., Ruteng, Gn. Ranaka	–	+	+	–
ARC3437	Celeuthetini	<i>Moluccobius</i>	sp 2		N-Maluku, Ternate Isl., Marikurubu, Gn. Gamalama	+	+	+	+
ARC3439	Celeuthetini	<i>Moluccobius</i>	sp 3		N-Maluku, Halmahera Isl., Sidangoli, Kali batu putih	+	+	+	+

Table 1 Continued

Voucher ID	Tribe	Genus	Species	Author	Locality	CO1	AK	18S	16S
ARC3440	Celeuthetini	<i>Moluccobius</i>	sp 1		N-Maluku, Halmahera Isl., Sidangoli, Kali batu putih	+	+	+	+
ARC3544	Celeuthetini	<i>Nothes</i>	sp 2		W-Java, Cianjur, Gn. Gede above Kebun Gede	+	—	+	+
ARC3545	Celeuthetini	<i>Nothes</i>	sp 1		W-Java, Maja, Gn. Ciremai	+	+	+	+
ARC3547	Celeuthetini	<i>Nothes</i>	sp 3		W-Java, Gn. Sawal, Ciamis, Panjalu, Tempong	+	+	+	+
ARC3438	Celeuthetini	<i>Opterus</i>	<i>echinatus</i>	Marshall	N-Maluku, Halmahera Isl., Sidangoli, Kali batu putih	+	+	+	+
ARC3442	Celeuthetini	<i>Opterus</i>	sp 1		W-PAPUA, Biak Reg., Biak Island, Nernu	+	+	+	+
ARC3433	Celeuthetini	<i>Oribius</i>	sp 1		W-PAPUA, Jayawijaya Reg., Jiwiwa, Kurulu	+	+	+	+
ARC3428	Celeuthetini	<i>Parasphegaster</i>	cf <i>ottonis</i>	Heller	W-PAPUA, Jayapura Reg., Sentani, Cyclops Mts.	+	+	+	+
ARC3564	Celeuthetini	<i>Picronotus</i>	<i>asper</i>	Pascoe	N-Sulawesi, Tomohon, Rurukan, Gn. Mahawu	+	+	+	+
ARC3417	Celeuthetini	<i>Piezonus</i>	<i>kalidupae</i>	Heller	SE Sulawesi, Buton Isl., Bau Bau, Lapodi	+	+	+	+
ARC3425	Celeuthetini	<i>Piezonus</i>	<i>dammerincola</i>	Heller	S-Sulawesi, Selayar Isl., Pagarangan	+	+	+	+
ARC3553	Celeuthetini	<i>Piezonus</i>	<i>segnis</i>	Heller	Flores Isl., Ruteng, Hotel garden	+	+	+	+
ARC3539	Celeuthetini	<i>Syntrophus</i>	<i>virescens</i>	Heller	C-Bali, Bedugul, Gn. Pohen (= Gn. Tapak = Gn. Keramat)	+	—	+	+
ARC3540	Celeuthetini	<i>Syntrophus</i>	<i>setosapex</i>	(Heller)	C-Bali, Bedugul, Tamblingan	+	—	+	+
ARC3541	Celeuthetini	<i>Syntrophus</i>	cf <i>radiatifrons</i>	(Heller)	C-Bali, Bedugul, Tamblingan	+	—	+	+
ARC3542	Celeuthetini	<i>Syntrophus</i>	<i>carinulifer</i>	(Heller)	C-Bali, Bedugul, Gn. Catur	+	+	+	+
ARC3554	Celeuthetini	<i>Syntrophus</i>	sp 2		E-Java, Meru Betiri N.P., Sukamade	+	+	+	+
ARC3556	Celeuthetini	<i>Syntrophus</i>	<i>bipusulosus</i>	(Heller)	Lombok Isl., Gn. Rinjani, Senaru, Rinjani-track	+	+	+	+
ARC3557	Celeuthetini	<i>Syntrophus</i>	<i>echinatus</i>	(Heller)	Lombok Isl., W Sengigi, Gn. Pusuk	+	—	+	+
ARC3558	Celeuthetini	<i>Syntrophus</i>	sp 1		Lombok Isl., W Sengigi, Gn. Pusuk	+	+	+	+
ARC3543	Celeuthetini	<i>Temnogastrus</i>	<i>humeralis</i>	(Heller)	C-Bali, Bedugul, Gn. Catur	+	—	+	+
ARC3552	Celeuthetini	<i>Temnogastrus</i>	<i>granulatus</i>	Voss	Flores Isl., Ruteng, Gn. Ranaka	+	—	+	+
ARC3555	Celeuthetini	<i>Temnogastrus</i>	cf <i>javanus</i>	(Faust)	E-Java, Meru Betiri N.P., Sukamade	+	—	+	+
ARC3435	Celeuthetini	<i>Trigonospartus</i>	<i>rufidorsum</i>	Faust	PNG, Central Prov., Moroka area, Kailaki, Beremutana ridge	+	+	+	+
ARC3508	Ottistirini	<i>Ittostira</i>	pr <i>costulata</i>	Heller	S-Sulawesi, Tanah Toraja, Ponding, Baruppu	+	—	+	+
ARC3513	Ottistirini	<i>Ottistira</i>	<i>dani</i>	Riedel	W-PAPUA, Jayawijaya Reg., Jiwiwa, Kurulu	+	+	+	+
ARC3507	Pachyrhynchini	<i>Pachyrhynchus</i>	<i>forsteni</i>	Snellen van Vollenhoven	N-Maluku, Halmahera Isl., Jailolo, Payo, Gn. Jailolo	+	+	+	+
ARC3512	Pachyrhynchini	<i>Pantorhytes</i>	<i>huonarius</i>	Stibick	PNG, Morobe Prov., Huon peninsula, Sattelberg	+	+	+	+
ARC3506	Pachyrhynchini	<i>Sphenomorpha</i>	cf <i>wallacei</i>	Behrens	N-Maluku, Halmahera Isl., Jailolo, Payo, Gn. Jailolo	—	+	+	+

ter describing founder-event speciation (+J), which is assumed to be significant in archipelagic settings (Matzke 2013b, 2014). This program also allows the comparison of the different models tested in a statistical framework. We conducted the analyses using the BEAST maximum clade credibility tree with outgroups pruned. The following regions were used in the analyses: A, Java; B, Bali; C, Sulawesi; D, Lesser Sunda Islands; E, Moluccas; and F, New Guinea. Bali was coded as a separate area as it is in a critical zoogeographical position west of Wallace's Line; moreover, it had proved to be unrelated to Java in another weevil genus (Tänzler *et al.* 2014) raising doubts on the previously accepted opinion that the faunas of Java and Bali are very closely related. The distribution of each taxon was recovered from the literature (Faust 1895, 1896, 1897; Heller 1914, 1940, 1941; Günther 1938; Voss 1940, 1961; Marshall 1956) and/or from our field notes from the past 25 years. Some species will be described, respectively,

transferred to other genera in a separate publication (Riedel, in prep.). Because of the extremely dynamic palaeogeographical and palaeoclimatic histories of the region during the past 50 million years (Myr) (Miller *et al.* 2005; Hall 2012, 2013), we designed two time slices with differential dispersal rate parameters between the areas as summarized in Table 2.

Results

Phylogenetic relationships

The phylogenetic reconstructions obtained by MrBayes and RAxML (Fig. 1) were largely congruent and retrieved the tribe Celeuthetini as monophyletic. There is some uncertainty resolving the first clades of New Guinea genera, but a clade comprising all the taxa from Sulawesi and the Sunda Arc plus the Papuan genera *Albertisius*, *Apircalus*, *Opterus*, and genus 4 is strongly supported. The phylogeny of species from Sulawesi, the

Table 2 Matrices of time slices and dispersal rates used in BIOGEOBEARS

	Java	Bali	Sulawesi	Lesser S.	Moluccas	New Guinea
0–15.0 Ma						
Java	1	1	0.5	0.5	0	0
Bali	1	1	0.5	0.5	0.1	0
Sulawesi	0.5	0.5	1	0.1	0.5	0.1
Lesser S.	0.5	0.5	0.1	1	0	0
Moluccas	0	0.1	0.5	0	1	1
New Guinea	0	0	0.1	0	1	1
15.0–50.0 Ma						
Java	1	1	0.5	0.1	0	0
Bali	1	1	0.5	0.1	0	0
Sulawesi	0.5	0.5	1	0.1	0.5	0.1
Lesser S.	0.1	0.1	0.1	1	0	0
Moluccas	0	0	0.5	0	1	1
New Guinea	0	0	0.1	0	1	1

Lesser Sunda Islands and Java is well resolved and usually strongly supported, with the exception of the clade containing *Javaulius* partly showing weaker support. The genera *Piezonus* and *Picronotus* are deeply nested in *Coptorhynchus*, and the genera *Javaulius* and *Apicalodes* are nested in *Syntrophus*.

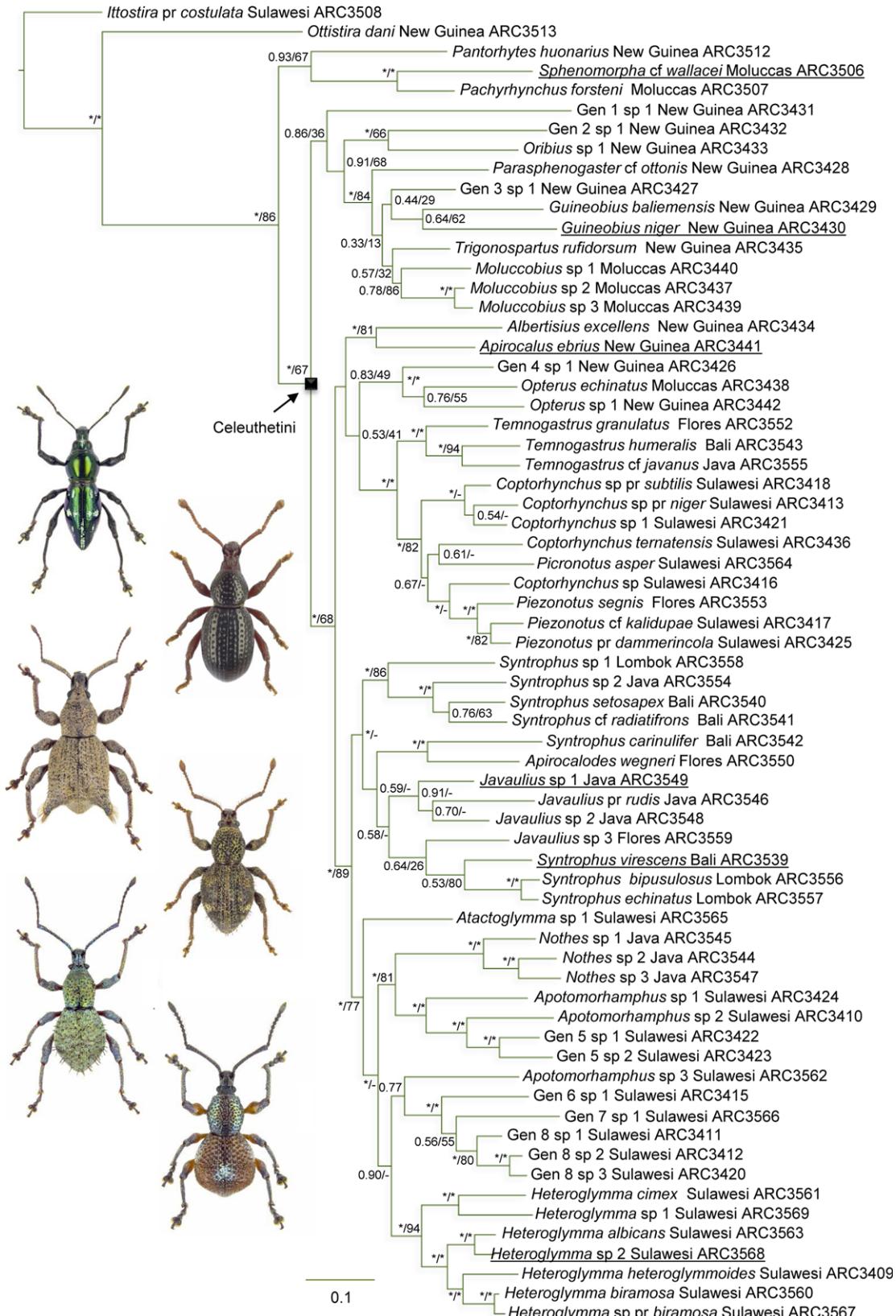
Divergence time estimates and ancestral range reconstruction

Our BEAST analysis recovered the split between the tribe Celeuthetini and its sister clade at 48.9 Ma (95% HPD: 37.1–62.1 Ma). A chronogram derived from our BEAST analysis and showing the divergence time estimates for the tribe is presented in Fig. 2. We infer an early origin of the tribe Celeuthetini in the late Eocene (43.5 Ma, 95% HPD: 34.0–55.4 Ma). The three main clades of Celeuthetini weevils diversified at the Eocene/Oligocene transition, while most branching events occurred during the Miocene. The latest diversification events are recovered in the genera *Heteroglymma* and *Moluccobius* during the Quaternary.

The results of the different models used in the program BIOGEOBEARS are presented in Table 3. In the null model M0 as well as in the model M1 comprising two time slices and optimized dispersal rates between areas, the model DEC+J was recovered as significantly better than the other models. A graphic representation of the biogeographical history under this model is presented in Fig. 3.

We infer a joint origin in New Guinea + Lesser Sunda Islands + Sulawesi, east of Wallace's Line (Figs 2 and 3). We find four independent transgressions of Wallace's Line possibly in the Miocene: three times from the Lesser Sunda Islands and one from Sulawesi to Java. We also infer one colonization event of Bali from Java, back towards the east, in the mid-Miocene without further transgression of Wallace's Line eastwards. We also infer

the colonization of Moluccas out of New Guinea at the same period. We recover two signatures of range expansion via founder-event speciation in the history of the group. The first one is the colonization of Sulawesi and Lesser Sunda Islands from New Guinea and in a more derived position of this same clade the colonization of the Lesser Sunda Islands from Sulawesi. Most of the biogeographical dynamics took place in the early stages of the history of the group with no main biogeographical event after the mid-Miocene.


Discussion

Phylogenetics and taxonomy

The phylogeny obtained is largely congruent with the generic classification and/or with important morphological characters. A separate publication will focus on taxonomic and nomenclatural issues (Riedel, in prep.), but few comments need to be made here as well. The genus *Coptorhynchus* Guérin-Méneville (*sensu strictu*, as defined by the concept of the junior synonym *Stereogastrus* Marshall; Alonso-Zarazaga & Lyal 1999) comprising >50 species from Sulawesi and the Moluccas is not monophyletic. It is characterized by a sexually dimorphic modification of the female venter with ventrites 1 and 2 enlarged and ventrites 3–5 unusually small and retracted (Voss 1940; Marshall 1956). A similar modification is also found in *Piezonus* Schoenherr and *Picronotus* Marshall (see Marshall 1956, p. 126), which according to our reconstruction are part of the *Coptorhynchus* clade. At least two other genera not included in our phylogeny (*Machaerostylus* Heller from New Britain and *Tarunus* Marshall from the Sangihe Islands) have a similar morphology and may also need to be synonymized after a more comprehensive study.

Syntrophus Marshall is also polyphyletic: the main character separating it from the largely edaphic *Javaulius* Marshall is a longer funicular article 2. However, in edaphic genera of Celeuthetini, the articles of the antennal funicle are always short and subovate, so apparently this change of character is related to a change of habitat. *Apicalodes* Voss was described as a monotypic genus because of its unusual elytral flanges resembling the Papuan genus *Apicalodus* Pascoe otherwise not closely related (Voss 1961). More interesting is the convergent gain, respectively, the secondary loss of a peculiar conical eye shape. However, this character has long been known as homoplastic (Heller 1940; pp. 93–94) and is found equally unstable in the genus *Trigonops* Guérin-Méneville (Tanner 1969).

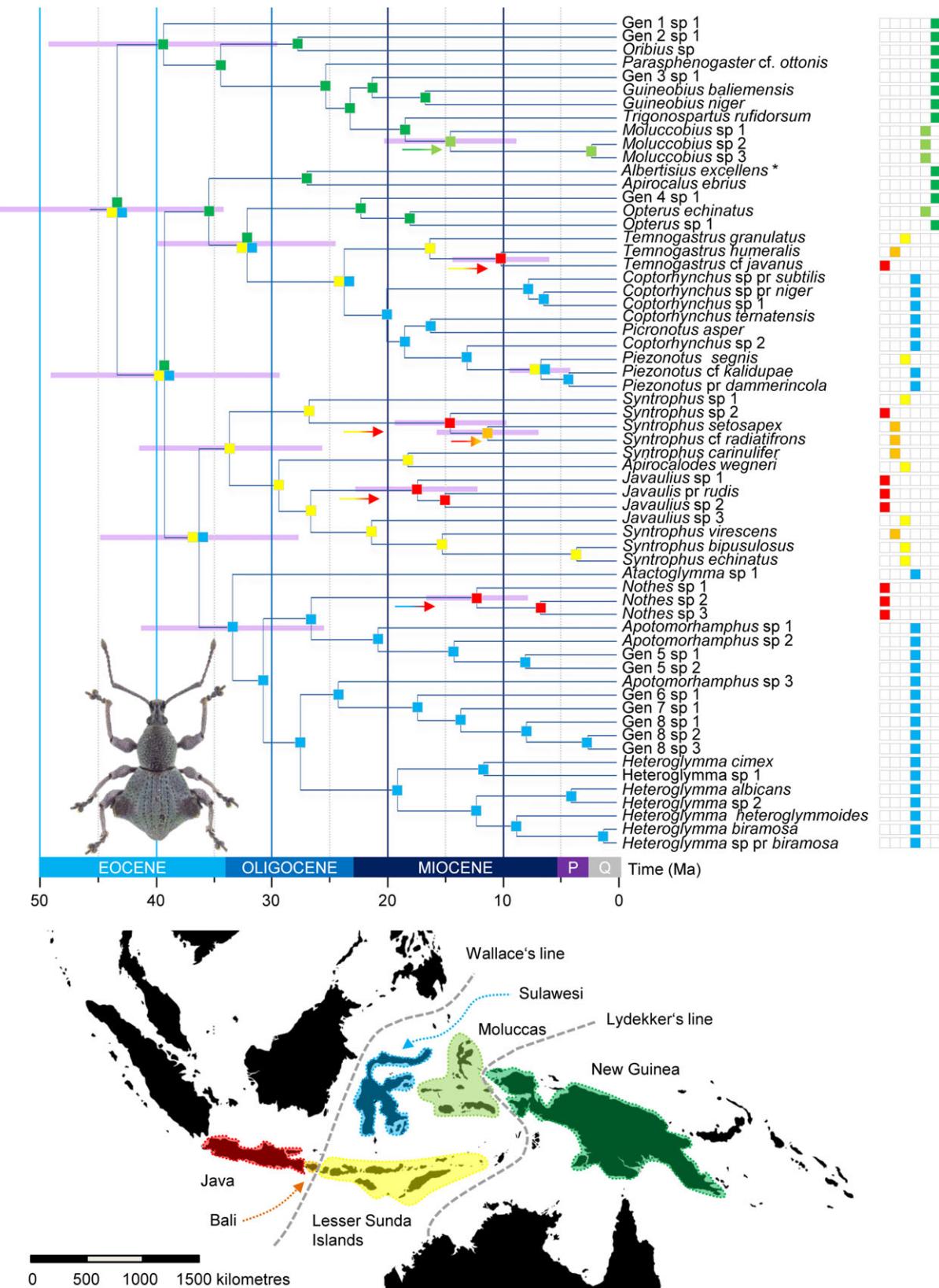
More taxonomic work on Celeuthetini is needed, and ideally studies based on morphology should go hand-in-hand with molecular phylogenetic work, to arrive at a stable classification. Nomenclature, systematics and ultimately biogeography could greatly benefit from an expansion of the

Fig. 1 Phylogenetic relationships as recovered in the MrBayes analysis of the concatenated data set. Values at each node (A/B) are (A) posterior probability of MrBayes analysis, (B) bootstrap support value of RaxML analysis; a hyphen indicates that this node is not found in the ML-based topology. Asterisks indicate strongly supported nodes with a posterior probability ≥ 0.95 or a bootstrap support value ≥ 70 . The species for which a habitus is shown on the left have their names underlined, and the ordering of the pictures follows the ordering of the phylogeny from top to bottom.

current data set to include other zoogeographical regions, that is the Philippines, Solomons etc., which would allow a test of the currently recognized genera for monophyly.

Origins and biogeography

Our divergence time estimates are based on the BEAST analysis using a Bayesian relaxed clock calibrated with a Tenebrionidae substitution rate (Papadopoulou *et al.* 2010). This dating might be debatable as the rate is not extracted from a Curculionidae clade but from a fairly distant family. No reliable fossil-based phylogeny of weevils is available to date, and the only one published does not contain a representative of Celeuthetini (McKenna *et al.* 2009). The proposed timing of events might be slightly older than the reality as some flightless taxa supposedly have an accelerated rate of evolution (Ikeda *et al.* 2012; Vogler & Timmermans 2012; Mitterboeck & Adamowicz 2013). We consider the proposed time frame as reasonable enough to serve as a base for further discussion despite these uncertainties. In any case, the directionality of the biogeographical events was robustly established here.


We here suggest a mid-Eocene origin of the tribe Celeuthetini somewhere east of Wallace's Line in a region spanning the Lesser Sunda Islands, New Guinea and Sulawesi. In the mid-Eocene, most of the extant Lesser Sunda Islands were not subaerial yet, and Sulawesi as we know it today consisted of three fragments separated by thousands of kilometres ocean (Hall 2012, 2013). One of these fragments was part of the Sula Spur, a promontory of the Australian plate and in proximity to the proto Papuan arc (Hall 2012, 2013). Large parts of the Moluccas and potentially of the Lesser Sunda Islands were formed by the fragmentation of the Sula Spur and the collision of some of these fragments with the Sunda Shelf during the Miocene (Hall 2013). Additionally, most of New Guinea emerged from the collision of the Australian and Asian plates in the past 10 Myr (Toussaint *et al.* 2014 for a geological review). Therefore, during the Eocene, most of what constitutes these islands today was part of the Gondwanan stock moving northwards, and it seems unlikely that the ancestor of Celeuthetini originated in one of the two remaining parts of Sulawesi, that is on the Sunda Shelf (western part of the island) or on drifting oceanic terranes (northern part of the island). Hence, we hypothesize that these weevils originated in an Australo-Papuan setting east of Wallace's Line (Fig. 3), a scenario already suggested in corvoid birds

(Jönsson *et al.* 2011; Aggerbeck *et al.* 2014) and presumably also exhibited by other taxa, for example rainbowfishes (Unmack *et al.* 2013). At that time, Australia and emerged parts of New Guinea featured a somewhat subtropical to tropical climate (Martin 2006). It was only during the mid-Miocene that Australia experienced a dramatic aridification that led to the loss of tropical habitats. Based on the current environmental preferences of Celeuthetini, such a landmass would have been a very suitable setting for their rapid evolution. This scenario is compatible with our results as we only recover a segregation of lineages in the Lesser Sunda Islands, New Guinea and Sulawesi until the early to mid-Miocene (Fig. 3). It is possible that Celeuthetini are closely related to Elytrurini and/or Rhyncogonini, tribes restricted to the islands of the West Pacific, respectively, Polynesia, and possibly sharing a common ancestry having evolved in this setting at tropical latitudes.

The assemblage of Sulawesi as well as the aggregation and emergence of the Lesser Sunda Islands with the Greater Sunda Islands is dated to the early Miocene. Celeuthetini weevils at that time present in New Guinea, Lesser Sunda Islands and eastern Sulawesi were able to cross Lydekker's and Wallace's Lines several times to colonize the western part of the archipelago in Bali and Java. The genus *Moluccobius* endemic to the Moluccas and West New Guinea results from the crossing of Lydekker's Line by New Guinean ancestors in the early to mid-Miocene. A few hundred kilometres south, ancestors from the Lesser Sunda Islands crossed Wallace's Line repeatedly to give rise to at least three independent lineages in Java (Fig. 3). We also recover a transgression of Wallace's Line from Sulawesi towards Java in the mid-Miocene. All these events are associated with founder-event speciation meaning that a part of the ancestral population dispersed and colonized a new geographical area not previously occupied by the ancestor. These dynamic biogeographical events could possibly be accounted for by passive dispersal in/on flotsam or drifting terrane blocks. Unfortunately, the life cycle of these weevils is mostly unknown, and future investigations of their biology might bring new insights into the understanding of their biogeographical history.

Conclusion

We suggest a mid-Eocene origin of Celeuthetini weevils east of Wallace's Line. Throughout their evolution, these beetles have been able to cross biogeographical lines in

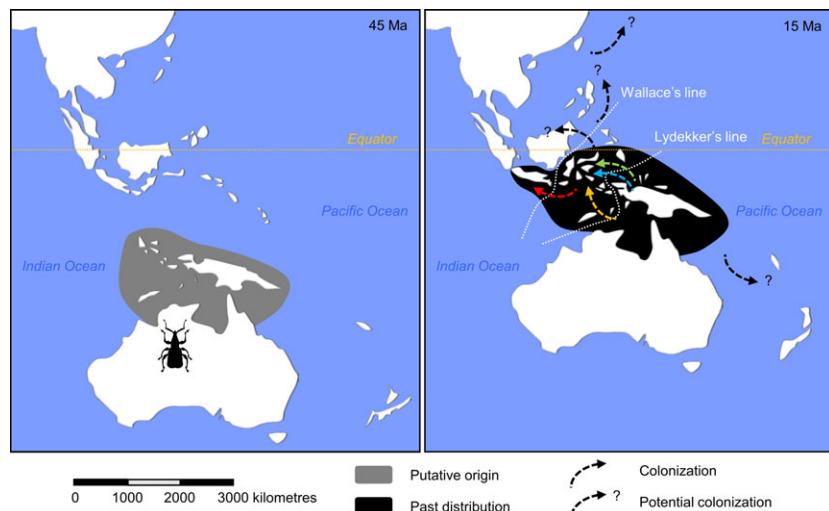


Fig. 2 Historical biogeography of the Indo-Australian Celeuthetini weevils. Chronogram presenting the median divergence time estimates resulting from the BEAST analysis. The distribution of each taxon is given in a geographical matrix on the right side of the chronogram with colours referring to the geographical map at the bottom of the figure. Coloured squares indicate the most likely ancestral area recovered at each node. Coloured arrows indicate founder-event speciation as implemented in BioGeoBEARS using the $+J$ parameter. The 95% HPD of the median ages are highlighted by horizontal pink bars. The habitus picture shows *Albertisius excellens* as indicated by the asterisk next to the name.

Table 3 Results of the BIOGEOBEARS analyses

	N. param.	AIC	P-value	LnL	j	d	e
M0							
DEC	2	198.6	–	–97.31	NA	0.0022	0.0023
DEC+J	3	138.6	***	–66.28	0.0345	0.0000	0.0000
DIVALIKE	2	181.2	–	–88.60	NA	0.0026	0.0000
DIVALIKE+J	3	139.6	–	–66.79	0.0364	0.0000	0.0000
BAYAREALIKE	2	224.3	–	–110.17	NA	0.0036	0.0074
BAYAREALIKE+J	3	154.8	–	–74.42	0.0324	0.0010	0.0010
M1							
DEC	2	195.9	–	–95.95	NA	0.0071	0.0040
DEC+J	3	141.2	***	–67.58	0.1025	0.0000	0.0000
DIVALIKE	2	183.3	–	–89.67	NA	0.0077	0.0000
DIVALIKE+J	3	142.2	–	–68.12	0.1077	0.0000	0.0000
BAYAREALIKE	2	204.9	–	–100.44	NA	0.0057	0.0063
BAYAREALIKE+J	3	151.0	–	–72.48	0.0989	0.0010	0.0010

The *** symbol indicates that this model is significantly supported as the best model. M0, no time slice, all dispersal rates equal, all areas allowed. M1, two time slices, optimized dispersal rates, all areas allowed.

Fig. 3 Biogeographical scenario of Celeuthetini evolution in a palaeogeological framework. Maps illustrating the geological setting of the Indo-Australian archipelago 45 and 15 million years ago redrawn from Hall (2002, 2012, 2013) and Toussaint *et al.* (2014). The colours of the arrows indicate the area towards which the colonization event is directed. Because the taxon sampling does not include specimens from Borneo, Japan, the Philippines, Taiwan or the West Pacific region, we presented putative colonization events in the second map.

the IAA despite their flightlessness. This study adds to the growing body of evidence suggesting a more limited role of Wallace's and Lydekker's Lines in the biogeographical history of IAA arthropods. Waterways may not be as much of a barrier to some terrestrial organisms as they appear to us, but instead offer the opportunity of passive transportation, at least at times of favourable currents and weather conditions. Whether significant diversification can follow such a dispersal event will

depend on ecological factors and the time available. To explore these mechanisms of dispersal will be the next big challenge of biogeography.

Acknowledgements

We thank LIPI (Indonesian Institute of Sciences), RISTEK (Ministry of State for Research and Technology, Indonesia), the Department of Forestry (Jakarta, Indonesia) and the PNG Department of Environment and Conservation

(Boroko, Papua New Guinea) for providing relevant permits. Bega Inaho (Goroka, Papua New Guinea) and Agus Faknik (Abepura, Indonesia) helped collect the specimens. Matthew van Dam (Munich, Germany) gave us an introduction to the program BIOGEOBEARS. Identification of voucher specimens was supported by O. Jäger and K. Kläss at Museum für Tierkunde (Dresden) and by M. Barclay, M. Geiser and C. Lyal at the Natural History Museum (London). We thank two anonymous reviewers for valuable comments. Last, but not least, the field work in Indonesia and Papua New Guinea would not have been possible without the generous hospitality and help of many local people, and we thank all of them very warmly.

References

Aggerbeck, M., Fjeldså, J., Christidis, L., Fabre, P. H. & Jönsson, K. A. (2014). Resolving deep lineage divergences in core corvoid passerine birds supports a proto-Papuan island origin. *Molecular Phylogenetics and Evolution*, *70*, 272–285.

Alonso-Zarazaga, M. A. & Lyal, C. H. C. (1999). *A World Catalogue of Families and Genera of Curculionoidea (Excepting Scolytidae and Platypodidae)*. Barcelona: Entomopraxis. 316 pp.

Balke, M., Ribera, I., Hendrich, L., Miller, M. A., Sagata, K., Posman, A., Vogler, A. P. & Meier, R. (2009). New Guinea highland origin of a widespread arthropod supertramp. *Proceedings of the Royal Society of London B: Biological Sciences*, *276*, 2359–2367.

Brown, G. K., Nelson, G. & Ladiges, P. Y. (2006). Historical biogeography of *Rhododendron* section *Vireya* and the Malesian Archipelago. *Journal of Biogeography*, *33*, 1929–1944.

Brown, R. M., Siler, C. D., Oliveros, C. H., Esselstyn, J. A., Diesmos, A. C., Hosner, P. A., Linkem, C. W., Barley, A. J., Oaks, J. R., Sanguila, M. B., Welton, L. J., Blackburn, D. C., Moyle, R. G., Townsend Peterson, A. & Alcalá, A. C. (2013). Evolutionary processes of diversification in a model island archipelago. *Annual Review of Ecology, Evolution, and Systematics*, *44*, 411–435.

Condamine, F. L., Toussaint, E. F. A., Cotton, A. M., Genson, G. S., Sperling, F. A. & Kergoat, G. J. (2013). Fine-scale biogeographical and temporal diversification processes of peacock swallowtails (*Papilio* subgenus *Achillides*) in the Indo-Australian Archipelago. *Cladistics*, *29*, 88–111.

Crayn, D. M., Costion, C. & Harrington, M. G. (2015). The Sahul-Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. *Journal of Biogeography*, *42*, 11–24.

Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. *Molecular Biology and Evolution*, *29*, 1969–1973.

Erixon, P., Svennblad, B., Britton, T. & Oxelman, B. (2003). Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. *Systematic Biology*, *52*, 665–673.

Evans, B. J., Brown, R. M., McGuire, J. A., Supriatna, J., Andayani, N., Diesmos, A., Iskandar, J., Melnick, D. J. & Cannatella, D. C. (2003). Phylogenetics of fanged frogs: testing biogeographical hypotheses at the interface of the Asian and Australian faunal zones. *Systematic Biology*, *52*, 794–819.

Faust, J. (1895). Rüsselkäfer aus dem Malayischen Archipel. *Stettiner Entomologische Zeitung*, *56*, 81–114.

Faust, J. (1896). Neue Curculioniden aus Java. *Stettiner Entomologische Zeitung*, *57*, 136–164.

Faust, J. (1897). Neue Gattungen und Arten in der Celeuthetiden-Gruppe. *Stettiner Entomologische Zeitung*, *58*, 229–298.

Günther, K. (1938). Die von Prof. Woltreck auf den Nanoesa-, Talaud- und Sanghir-Inseln und auf Celebes gesammelten Rüsselkäfer mit zoogeographischen und faunenhistorischen Studien über die Stellung der Nanoesa-, Talaud- und Sanghir-Inseln, sowie über die Verbreitung einiger Curculionidentribus in der Wallacea. *Internationale Revue der gesamten Hydrobiologie*, *38*, 1–53.

Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. *Journal of Asian Earth Sciences*, *20*, 353–431.

Hall, R. (2012). Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. *Tectonophysics*, *570*, 1–41.

Hall, R. (2013). The palaeogeography of Sundaland and Wallacea since the Late Jurassic. *Journal of Limnology*, *72*, 1–17.

Heller, K. M. (1900). Neue Käfer von Celebes. IV. *Abhandlungen und Berichte des Königlichen Zoologischen und Anthropologisch-Ethnographischen Museums zu Dresden*, *9*, 1–46 + 1 pl.

Heller, K. M. (1914). Coleoptera von Seram (Ceram) und Bali. (Zoologische Ergebnisse der II. Freiburger Molukken-Expedition.). *Entomologische Mitteilungen*, *3*, 293–315, 1 pl.

Heller, K. M. (1940). Indomalaysische Rüsselkäfer II. *Arbeiten über morphologische und taxonomische Entomologie aus Berlin-Dahlem*, *7*, 92–113, 1 pl.

Heller, K. M. (1941). Neues über die Unterfamilien der Otiorhynchinae und Calandrinae, besonders von *Piezonus* u. *Nassophasis* (Coleoptera: Curculionidae). *Arbeiten über morphologische und taxonomische Entomologie aus Berlin-Dahlem*, *8*, 149–161.

Hillis, D. M. & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. *Systematic Biology*, *42*, 182–192.

Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. (2004). Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. *Molecular Biology and Evolution*, *21*, 1123–1133.

Huxley, T. H. (1868). On the classification and distribution of the Alectoromorphae and Heteromorphae. *Proceedings of the Zoological Society of London*, *1868*, 294–319.

Ikeda, H., Nishikawa, M. & Sota, T. (2012). Loss of flight promotes beetle diversification. *Nature Communications*, *3*, 648.

Jönsson, K. A., Fabre, P.-H., Ricklefs, R. E. & Fjeldså, J. (2011). Major global radiation of corvoid birds originated in the proto-Papuan archipelago. *Proceedings of the National Academy of Sciences*, *108*, 2328–2333.

Katoh, K. & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution*, *30*, 772–780.

Klaus, S., Selvandran, S., Goh, J. W., Wowor, D., Brandis, D., Koller, P., Schubart, C. D., Streit, B., Meier, R., Ng, P. K. L. & Yeo, D. C. J. (2013). Out of Borneo: neogene diversification of Sundaic freshwater crabs (Crustacea: Brachyura: Gecarcinucidae: Parathelphusa). *Journal of Biogeography*, *40*, 63–74.

Landis, M. J., Matzke, N. J., Moore, B. R. & Huelsenbeck, J. P. (2013). Bayesian analysis of biogeography when the number of areas is large. *Systematic Biology*, *62*, 789–804.

Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution*, *29*, 1695–1701.

Lohman, D. J., de Bruyn, M., Page, T., von Rintelen, K., Hall, R., Ng, P. K. L., Shi, H.-T., Carvalho, G. P. & von Rintelen, T. (2011). Biogeography of the Indo-Australian Archipelago. *Annual Review of Ecology, Evolution, and Systematics*, *42*, 205–226.

Lydekker, R. 1896. *A Geographical History of Mammals*. Cambridge, UK: Cambridge University Press. 400 pp.

Marshall, G. A. K. (1956). *The Otiorrhynchine Curculionidae of the Tribe Celeuthetini (Col.)*. London: Trustees of the British Museum. 134 pp.

Martin, H. A. (2006). Cenozoic climatic change and the development of the arid vegetation in Australia. *Journal of Arid Environments*, *66*, 533–563.

Matzke, N. J. (2013a). Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. *Frontiers of Biogeography*, *5*, 242–248.

Matzke, N. J. (2013b). *BioGeoBEARS: BioGeography with Bayesian (and Likelihood) Evolutionary Analysis in R Scripts*. Berkeley, CA: University of California. <http://CRAN.R-project.org/package=BioGeoBEARS>.

Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. *Systematic Biology*, *63*, 951–970.

McKenna, D. D., Sequeira, A. S., Marvaldi, A. E. & Farrell, B. D. (2009). Temporal lags and overlap in the diversification of weevils and flowering plants. *Proceedings of the National Academy of Sciences*, *106*, 7083–7088.

Meier, R., Kwong, S., Vaidya, G. & Ng, P. K. L. (2006). DNA barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. *Systematic Biology*, *55*, 715–728.

Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N. & Pekar, S. F. (2005). The Phanerozoic record of global sea-level change. *Science*, *312*, 1293–1298.

Mitterboeck, T. F. & Adamowicz, S. J. (2013). Flight loss linked to faster molecular evolution in insects. *Proceedings of the Royal Society of London B: Biological Sciences*, *280*, 20131128.

Müller, C. J., Matos-Maraví, P. F. & Beheregaray, L. B. (2013). Delving into *Delias* Hübner (Lepidoptera: Pieridae): fine-scale biogeography, phylogenetics and systematics of the world's largest butterfly genus. *Journal of Biogeography*, *40*, 881–893.

Papadopoulou, A., Anastasiou, I. & Vogler, A. P. (2010). Revisiting the insect mitochondrial molecular clock: the mid-aegean trench calibration. *Molecular Biology and Evolution*, *27*, 1659–1672.

Pullen, K. R., Jennings, D. & Oberprieler, R. G. (2014). Annotated catalogue of Australian weevils (Coleoptera: Curculionoidea). *Zootaxa*, *3896*, 1–481.

Ree, R. H. & Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. *Systematic Biology*, *57*, 4–14.

Ree, R. H., Moore, B. R., Webb, C. O. & Donoghue, M. J. (2005). A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. *Evolution*, *59*, 2299–2311.

Riedel, A. & Schönitzer, K. (1996). Revision of the soil-weevil genus *Guineobius* Osella from New Guinea (Coleoptera, Curculionoidea, Entiminae, Celeuthetini). *Revue Suisse de Zoologie*, *103*, 1–22.

Ronquist, F. (1997). Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. *Systematic Biology*, *46*, 195–203.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*, *61*, 539–542.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics*, *22*, 2688–2690.

Stelbrink, B., Albrecht, C., Hall, R. & von Rintelen, R. (2012). The biogeography of Sulawesi revisited: is there evidence for a vicariant origin of taxa on Wallace's "anomalous island"? *Evolution*, *66*, 2252–2271.

Swofford, D. L. (2003). *PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods)*. Version 4. Sunderland, MA: Sinauer Associates.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. *Molecular Biology and Evolution*, *30*, 2725–2729.

Tanner, V. M. (1969). A study of the weevil tribe Celeuthetini of the Solomon Islands (Coleoptera: Curculionidae). *Brigham Young University Science Bulletin-Biological Series*, *10*, 1–48.

Tänzler, R., Toussaint, E. F. A., Suhardjono, Y. R., Balke, M. & Riedel, A. (2014). Multiple transgressions of Wallace's Line explain diversity of flightless *Trigonopterus* weevils on Bali. *Proceedings of the Royal Society B*, *281*, 20132528.

Thomas, D. C., Hughes, M., Phutthai, T., Ardi, W. H., Rajbhandary, S., Rubite, R., Twyford, A. D. & Richardson, J. E. (2012). West to east dispersal and subsequent rapid diversification of the mega-diverse genus *Begonia* (Begoniaceae) in the Malesian archipelago. *Journal of Biogeography*, *39*, 98–113.

Thompson, R. T. (1977). A revision of the New Guinea weevil genus *Apicalatus* Pascoe (Coleoptera: Curculionidae). *Bulletin of the British Museum (Natural History) Entomology series*, *36*, 193–280.

Toussaint, E. F. A., Sagata, K., Surbakti, S., Hendrich, L. & Balke, M. (2013). Australasian sky islands act as a diversity pump facilitating peripheral speciation and complex reversal from narrow endemic to widespread ecological supertramp. *Ecology and Evolution*, *3*, 1031–1049.

Toussaint, E. F. A., Hall, R., Monaghan, M., Sagata, K., Ibalim, S., Shaverdo, H. V., Vogler, A. P., Pons, J. & Balke, M. (2014). The towering orogeny of New Guinea as a trigger for arthropod megadiversity. *Nature Communications*, *5*, 5001.

Turner, H., Hovenkamp, P. & Van Welzen, P. C. (2001). Biogeography of southeast Asia and the west Pacific. *Journal of Biogeography*, *28*, 217–230.

Unmack, P. J., Allen, G. R. & Johnson, J. B. (2013). Phylogeny and biogeography of rainbowfishes (Melanotaeniidae) from

Australia and New Guinea. *Molecular Phylogenetics and Evolution*, 67, 15–27.

Vogler, A. P. & Timmermans, M. J. (2012). Speciation: don't fly and diversify? *Current Biology*, 22, R284–R286.

Voss, E. (1940). Über Rüsselkäfer der Indomalayischen Subregion, vorwiegend von Java. (Coleoptera: Curculionidae.) Teil II. *Arbeiten über morphologische und taxonomische Entomologie, Berlin-Dahlem*, 7, 279–287.

Voss, E. (1961). Über einige weitere Curculioniden aus dem indonesischen Raum. (Col. Curc.). *Treubia*, 25, 241–267.

Wallace, A. R. (1860). On the zoological geography of the Malay Archipelago. *Zoological Journal of the Linnean Society*, 4, 172–184.

Wallace, A. R. (1869). *The Malay Archipelago*. London: Macmillan. 512 pp.

Wanntorp, L., Grudinski, M., Forster, P.I., Muellner-Riehl, A. N. & Grimm, G. W. (2014). Wax plants (*Hoya*, Apocynaceae) evolution: Epiphytism drives successful radiation. *Taxon*, 63, 89–102.

Webb, C. O. & Ree, R. H. (2012). Historical biogeography inference in Malesia. In: D. Gower, K. G. Johnson, B. R. Rosen, J. Richardson, L. Rüber & S. T. Williams (Eds). *Biotic Evolution and Environmental Change in Southeast Asia*. Cambridge: Cambridge University Press, 191–215.

Wesis, P., Niangu, B., Ero, M., Masamdu, R., Autai, M., Elmouttie, D. & Clarke, A. R. (2010). Host use and crop impacts of *Oribius* Marshall species (Coleoptera: Curculionidae) in Eastern Highlands Province, Papua New Guinea. *Bulletin of Entomological Research*, 100, 133–143.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Molecular biology protocols used in this study.