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The origin of the astonishing New Caledonian biota continues
to fuel a heated debate among advocates of a Gondwanan
relict scenario and defenders of late oceanic dispersal. Here,
we study the origin of New Caledonian Trigonopterus flightless
weevils using a multimarker molecular phylogeny. We infer
two independent clades of species found in the archipelago.
Our dating estimates suggest a Late Miocene origin of both
clades long after the re-emergence of New Caledonia about
37 Ma. The estimation of ancestral ranges supports an ancestral
origin of the genus in a combined region encompassing
Australia and New Guinea with subsequent colonizations
of New Caledonia out of New Guinea in the mid-Miocene.
The two New Caledonian lineages have had very different
evolutionary trajectories. Colonizers belonging to a clade of
foliage dwellers greatly diversified, whereas species inhabiting
leaf-litter have been less successful.

1. Background

New Caledonia is an archipelago about 1200km east of
Australia in the South Pacific (figure 1). Its main island,
Grande Terre, is one of the largest Pacific islands. New
Caledonia is a hotspot of biodiversity characterized by remarkable
diversification and endemism, and home to a number of
enigmatic or supposedly relictual lineages: Amborella (sister-
group to the angiosperms [1]) or the Kagu of the monotypic
bird family Rhynochetidae, sister-group to the South American
sunbittern [2]. The origin of this biota has been intensively studied
over the past century but not without significant contention
[3-5]. Some authors portray New Caledonia as an ancient
continental island carrying relictual Gondwanan flora and fauna
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Figure 1. Map of New Caledonia and sampling localities. Geographical map of the New Caledonian archipelago with a relief layer
indicating terrane elevation. Pink dots indicate sampling localities where specimens of Trigonapterus used in this study were collected
(see electronic supplementary material, appendix S1for more details).

to its present location and, therefore, identify diversification after vicariance as the main driver of local
diversity [6-9]. The wider use of phylogenetic methods initiated a paradigm [10,11] substantiating the
idea that New Caledonia is better described as an old Darwinian island and its biotic origin very well
explained by transoceanic dispersal [4,12-16].

The main reason for this debate lies in the divergent interpretation of geological evidence regarding
the complete submergence of New Caledonia between the Palaeocene and the Eocene [4,5]. Grande
Terre is a Gondwanan fragment at the northern edge of a continental block known as Zealandia or
Tasmantis, connected via the Norfolk Ridge with New Zealand in its centre, that started displacing
from Gondwana ca 80 Ma [17]. Drifting northeastwards in the past ca 65Myr, this fragment reached
its present position ca 50 Ma. Between 65 and 45Ma, there is clear geological evidence that Grande
Terre was deeply submerged, as indicated by pelagic limestone and chert deposits [18,19]. Substantial
terranes only became subaerial during an Oligocene lithosphere extension phase following the collision
with the Loyalty Island arc [18-20], therefore contradicting the hypothesis of Gondwanan refuge in New
Caledonia. As a result, post-Eocene dispersal commencing at ca 37 Ma has been invoked as the most likely
scenario to explain the origin and diversification of New Caledonian clades [4]. Most of the recent studies
using molecular dating to study the origin of New Caledonian clades rejected the vicariance/museum
hypothesis and an associated ancient Gondwanan origin of biota (e.g. [13,21-27], but see also [28]).

However, alternative hypotheses have been proposed to explain the occurrence of relict clades in New
Caledonia. Incomplete submergence of mountainous parts of Grande Terre [8] or regional dispersal from
nearby islands [29,30] have been invoked to explain the ancient age of New Caledonian plants [31]. Very
rare empirical examples such as the Troglosironidae harvestmen suggest a vicariant Gondwanan scenario
for New Caledonian taxa [32]. In a recent study focusing on conifer macroevolution, Condamine et al. [33]
hypothesized that now-sunk islands served as refugia for conifers when New Caledonia was submerged.
This work is one of the very few examples rejecting both Cretaceous vicariance and Late Eocene dispersal
as exclusive hypotheses (see also [34]). New Caledonia’s biotic origins are most probably best explained
by different mechanisms combined, and there remains a need for comprehensively sampled studies to
investigate the origin and subsequent diversification of New Caledonian clades. Those with limited
dispersal capacities might be particularly suitable, as they should be the best candidates for carrying
an imprint of vicariance events.
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Trigonopterus weevils are flightless and have a remarkable tendency towards local endemism [35].
Yet, the accumulated distribution is vast, ranging east-west from Sumatra to Samoa and south-north
from New Caledonia to the Philippines. Their presence on oceanic islands (e.g. on Samoa) suggests some
potential for infrequent long-distance dispersal despite their generally limited dispersal abilities. Only
90 species were described by 2012 [36,37] but hundreds of additional ones have been discovered and
described since [38—40], so their current number amounts to 341 described species. Trigonopterus weevils
are truly hyperdiverse in New Guinea, which might feature well above 1000 species [35,41]. Only very
few of these appear to span ranges measuring greater than 40 km [35], and even in comparatively well-
collected Australia, the majority of species are recorded only from highly restricted areas [40]. New
Caledonia has 32 described species, but the same number of species or more remain undescribed [42]
(A.R. 2017, unpublished data). No specimens were available from Fiji, Samoa or the Solomon Islands,
from where the genus has been recorded, or Vanuatu, where it is likely to be found.

Here, we use a dated multimarker molecular phylogeny of the entire genus and a comparative
biogeographical framework to test the following competing hypotheses:

1. Museum hypothesis, implying an old age >80Ma for both the crown of the New Caledonian
clade(s) and the stem node(s), with a Gondwanan origin.

2. Ancient island-hopping hypothesis, implying an old age for the stem node of the New
Caledonian clade(s) but not necessarily for its crown.

3. Recent long-distance dispersal hypothesis, implying a young age <37Ma for both the New
Caledonian clade(s) and the parent node(s), with probably a Melanesian origin.

2. Material and methods

2.1. Taxon sampling and molecular biology

Besides four outgroup representatives of other Cryptorhynchinae species from Australia and
New Guinea, we sampled 143 Trigonopterus species from their western and central geographical
range, representing all important species groups and lifestyles (electronic supplementary material,
appendix S1). New Caledonian Trigonopterus were represented by 52 species, only 18 of which could
be assigned to described species. Five of the species included were each represented by two lineages
possibly representing cryptic species. These 57 specimens were selected from 520 specimens collected by
M. Wanat in the years 2004, 2008 and 2010, resulting in a total of 177 specimens for which a fragment of
COI was sequenced. Selection of specimens and delineation of species followed procedures as outlined
earlier [35,41]. A few specimens that showed no distinct morphological diagnostic characters but had a
pairwise uncorrected p-distance of more than 10% were interpreted as cryptic species and included as
separate species in the analysis.

Genomic DNA was extracted non-destructively using the DNeasy and NucleoSpin 96 Tissue kits
(Qiagen, Hilden; Macherey-Nagel, Diiren, Germany). Primers and PCR conditions are listed in electronic
supplementary material, appendix S2. We sequenced nine gene fragments with an alignment of 4637
base pairs (bp) consisting of fragments from cytochrome oxidase subunit I (CO1) (2 non-overlapping
fragments), mitochondrial 165 rRNA, Arginine kinase (AK), carbamoyl synthetase (CAD), Elongation
factor 1« (EF1 «), Enolase (EN), histone H4 (H4) and 18S rRNA (18S).

2.2. Phylogenetic inference

We used IQ-TREE 1.5 [43] to infer the phylogenetic relationships among Trigonopterus weevils in a
maximum-likelihood (ML) framework. The concatenated dataset was partitioned according to the results
of a PARTITIONFINDER v. 1.1.1 [44] analysis. The partitioning schemes and corresponding models of
substitutions were searched using the greedy algorithm and the raxml set of models in PARTITIONFINDER.
The likelihoods of the different models of substitution were compared using the Akaike information
criterion corrected (AICc). We performed 1000 ultrafast bootstrap replicates [45] and 1000 SH-aLRT single
branch test replicates to investigate nodal support across the topology.

2.3. Lifestyle mapping

New Caledonian Trigonopterus species are found in two distinct ecological niches: (i) edaphic, i.e.
dwelling in the forest litter layer and (ii) sitting on the foliage of the lower forest strata but without
causing visible feeding scars [41]; these two lifestyles are very stable in species: individuals are very
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rarely found in the ‘wrong niche’, e.g. by specimens dropped from foliage during sifting and thus found
in litter samples. Lifestyles were assigned to one of two categories (i.e. edaphic versus foliage dwellers)
based on original collecting information and morphological characters (electronic supplementary
material, appendix S1). They were mapped on the phylogeny using a parsimony reconstruction approach
as implemented in MESQUITE v. 3.2 (build 801) [46].

2.4. Divergence time estimates

To infer the divergence time estimates of the group, we first tested the hypothesis of the molecular clock
in MEGAG6 [47] by comparing the ML value of the IQ-TREE topology with and without the molecular
clock constraints under the Tamura-Nei model. The null hypothesis of an equal evolutionary rate
throughout the tree was rejected at a 5% significance level (p <0.001). Therefore, we used a Bayesian
relaxed clock approach as implemented in BEAST v. 1.8.2 [48].

‘Cryptorhynchinae sensu latu” are defined by a rostral furrow which was attained by several unrelated
groups, while the monophyletic Cryptorhynchinae sensu strictu currently cannot be diagnosed based
on single morphological characters [49]. To date, there is no fossil that could be related to Trigonopterus
and even the assignment of published records to Cryptorhynchinae s.s. is doubtful. Thus, we used two
types of calibration strategies to obtain absolute divergence time estimates for the origin and further
diversification of New Caledonian Trigonopterus weevils.

In our first strategy of calibration (CS1), we relied upon a biogeographical calibration point to enforce
maximum ages in the phylogeny. In the absence of alternative reliable external calibration points (e.g.
fossils), biogeographical calibrations can be very useful and provide meaningful insights [50]. Here, we
used the complete submergence of Java ca 10 Ma [51,52] to enforce a maximum age constraint on the
stem of Javanese species and/or clades in the topology. The maximum constraints were enforced in
BEAUi 1.8.2 [48] using normal distributions with a mean of 10 and an s.d. of 1. The distributions were
truncated to fit the interval (5-15Ma). The use of a normal prior distribution allows considering the
possibility that Javanese lineages are slightly older than the age of the re-emergence of Java ca 10 Ma. The
concatenated dataset was partitioned by gene and each fragment was assigned a different uncorrelated
lognormal relaxed clock model except for the mitochondrial fragments that were assigned a unique
clock model.

In our second strategy of calibration (CS2), we used published rates of nucleotide substitution to
constrain the ucld.mean (arithmetic mean of branch rates) of gene fragments sequenced in this study.
A recent study used multiple fossil constraints to calculate estimates of substitution rates in different
gene fragments sequenced for Carabus ground beetles [53]. This is one of the most recent, fossil-based
studies providing ucld.mean estimates and credibility intervals for different gene fragments in flightless
beetles. This study recovered a ucld.mean of 0.0134 substitutions per site per million year and per
lineage (credibility interval CI=0.0108-0.0162 subst/site/Myr/lin). A different study [54] conducted on
flightless darkling beetles (Coleoptera, Tenebrionidae) recovered comparable rates for the mitochondrial
clock using a well-documented biogeographic calibration point (ucld.mean = 0.0119 subst/site/Myr/lin;
CI=0.0108-0.0140 subst/site/Myr/lin). Considering the assumption that mitochondrial genes are
following a same clock model, we constrained the mitochondrial ucld.mean in our dataset (CO1 and 16S
combined), with a uniform prior distribution encompassing the CI (0.0108-0.0162 subst/site/Myr/lin),
calculated for mitochondrial genes of Carabus beetles [53]. We assumed a different clock for each nuclear
gene fragment, and the ucld.mean estimates of these were left unconstrained.

In both analyses, the tree model was set to a Yule model, and we used the IQ-TREE topology as
a fixed input by editing the .xml file. The runs consisted of 30 million generations sampled every 1000
generations for CS1, and of 50 million generations sampled every 5000 generations for CS2. Convergence
of the runs was assessed by checking the likelihood trace of each parameter and its effective sample size
in TRACER v. 1.6 (http:/ /BEAST.bio.ed.ac.uk/Tracer). A value of ESS >200 was acknowledged as a good
indicator of convergence. The maximum credibility consensus tree, median ages and their 95% highest
posterior density (HPD) were generated afterwards under TREEANNOTATOR v. 1.8.2 [48].

2.5. Biogeographical analyses

We used BioGeoBEARS [55] as implemented in R to estimate the ancestral ranges in the Trigonopterus
phylogeny. This software implements three different biogeographic models (DEC, DIVALIKE and
BAYAREALIKE) in a comparative framework. It also allows taking into account founder-event jump
dispersal when the parameter +j is included in the model. The analyses were carried out based on the

0v500L % s Uado 205y BuoBuysiiqndAsaposjeforsos:


http://BEAST.bio.ed.ac.uk/Tracer
http://rsos.royalsocietypublishing.org/

Downloaded from http://rsos.royalsocietypublishing.org/ on June 9, 2017

BEAST maximum clade credibility (MCC) tree (electronic supplementary material, S1) derived from the
CS1 analysis (see Results and discussion), and with out-groups removed. We used the following regions
in the analyses: A, Australia; B, Borneo; C, New Caledonia; G, New Guinea; ], Java; L, Lesser Sunda
islands; M, Moluccas; S, Sumatra and W, Sulawesi (figure 2). As the Indo-Australian archipelago has a
very dynamic geological history, we designed two time slices to take into account this palaeogeographic
evolution [51,52]. In the first time slice (30-15 Ma), the Australian and Oriental regions are still separated
by a large water corridor, whereas in a second time slice (15-0 Ma), the complex assemblage of the
Wallacea is already starting, thereby connecting the two regions. The dispersal rate scalers for each
time slice were calculated based on geographical distance between areas as the archipelago was
forming through time. Before 15 Ma, we restricted dispersal between each side of the ocean (Oriental
region/Australian region) to long-distance dispersal (rate scaler of 0.01). After 15Ma, when the Asian
and Australian plates collided and the orogeny of the archipelago initiated [15,51], the rate scalers
were based on the distance of the regions from one another, with values proportionally decreasing
with the increasing distance of focal areas (see electronic supplementary material, appendix S3 for
scaler matrices in the two time slices). Considering the complexity of the landscape and the relative
proximity of terranes across the archipelago [52], we allowed all possible area combinations in the
adjacency matrices of the two time slices. The maximum number of joint areas was limited to three in
all analyses.

3. Results and discussion

Trigonopterus was retrieved as monophyletic and the topology of our reconstruction is well resolved
(figure 2), with mostly high ultrafast bootstrap values for the main nodes of the backbone. The
New Caledonian species are unambiguously placed in two separate clades with strong support. The
BEAST analyses conducted with the two different calibration strategies gave congruent divergence time
estimates (table 1). The results of the BEAST dating analysis using the Java submergence calibration (CS1)
are summarized in figure 3, with details for major clade nodes in table 1 (see electronic supplementary
material, appendix S4 for more details). The best model in the BioGeoBEARS biogeographical analyses is
the DIVALIKE +j although the DEC +j model has an almost identical likelihood (table 2). Both models
reveal a very similar pattern with slight differences in regions of the tree that are, however, not the
focus of this study (electronic supplementary material, appendix S5). In the DIVALIKE + estimation,
the ancestral range estimation was unambiguous, as preferred ancestral ranges for each node of the
topology had a significantly better likelihood (greater than 50% of relative probability) than the next
possible ancestral range (figure 3; electronic supplementary material, appendix S6). Our estimates place
the origin of the genus at ca 27 Ma in a joint Australia + New Guinea ancestral region (clade C1). Most of
the lineages then occupied New Guinea from where species dispersed westwards, starting in the Mid-
Miocene (clade C10). This early occurrence in New Guinea deviates from recent geological evidence
suggesting a more recent emergence of New Guinea, although some amount of land and possibly even
altitude might have been available at the time in a proto-Papuan archipelagic setting [15,52,56-58]. Even
small geographical areas, as long as they have some higher elevations, might feature a rather diverse
Trigonopterus fauna as was shown for the Cyclops Mountains of Papua with 54 species found mainly
along a single transect [35,41].

The lineages found west of Wallace’s Line originated from dispersal out of New Guinea in the mid-
Miocene as estimated in clade C7 and clade C10, the latter having used Sulawesi as a stepping stone. This
is in line with palaeogeological reconstructions of the region [51,52] suggesting a junction of the Asian
and Australian plates at this time, therefore facilitating short-distance dispersal. The dating also matches
the transgression of Wallace’s Line in Sundaic Trigonopterus clades [16,58] and other weevil clades [59].

The two New Caledonian clades C12 and C14 are found to be of at least Mid-to-Late Miocene
origin and presumably originated from New Guinea via long-distance dispersal. The actual lineage
diversification in New Caledonia began ca 6 Ma and ca 10 Ma in C12 and C14, respectively.

Lifestyles of Trigonopterus species (i.e. edaphic versus foliage) are phylogenetically relatively stable
(figure 2). Changes are over-represented in our phylogeny because we tried to maximize diversity in
our species selection by choosing representatives of each group for each lifestyle. Both lifestyles are
represented in New Caledonia, and they are phylogenetically congruent with the two lineages: species
of clade 12 are edaphic, while those of clade 14 are all found on foliage. This might indicate some
undersampling of the edaphic fauna, but extensive litter sifting in New Caledonia by Geoff Monteith
only revealed two additional species (in the Queensland Museum, Brisbane). Thus, the observed pattern
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Trigonopterus lescheri - New Caledonia - ARC2405
Trigonopterus sp. 627 New Caledonia - ARC2415
Trigonopterus sp_628 - New Caledonia - ARC1605
. Trigonopterus sp. 629 - New Caledonia - ARC1651
Trigonopterus sp. 630-A - New Caledonia - ARG1597
Trigonoplerus sp. 630-B - New Caledonia - ARC2412
o Trigonopterus sp. 631 - New Caledonia - ARC1657
ARC1605 Trigonopterus sp. 632 - New Caledonia - ARC2438

Trigonopterus parvus - New Caledonia - ARC2421
Trigonopterus sp. 585 - New Caledonia - ARC2436.
Trigonopterus sp. 586 - New Caledonia - ARC1641
Trigonopterus sp. 588 - New Caledonia - ARC1594
Figure 2. Phylogenetic tree of New Caledonian Trigonapterus. Maximum-likelihood phylogeny inferred using IQ-TREE. The main clades
are labelled. Support values of nodes are given with SH-aLRT (left) and ultrafast bootstrap (right). Brown lineages indicate an edaphic
lifestyle, and green lineages indicate foliage dwellers; black lineages are with an ambiguous lifestyle . Pink boxes mark New Caledonian
taxa. Labels of species illustrated to the left are underlined.
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Figure 3. Palaeobiogeography of New Caledonian Trigonopterus. BEAST chronogram presenting median age estimates for the
Trigonopterus radiation (see electronic supplementary material, appendix S4 for the full chronogram with Cl bars). The main clades are
labelled as in figure 2 and their age estimates are detailed in table 1. For each species used in this study, the distribution as defined in the
BioGeoBEARS analyses is given at the corresponding tip. The colours are coded following the map inserted at the bottom left corner of the
figure and as indicated in the caption. The ancestral range estimation recovered in the preferred BioGeoBEARS analyses (DIVALIKE + j)
is presented for every node of the phylogeny. Asterisks indicate that the estimated best ancestral range had more than 50% relative
probability compared with other possible ancestral ranges (see electronic supplementary material, appendix S6 for more details). The
photograph inserted at the bottom right corner highlights a specimen of Trigonopterus in natura (Queensland, Australia, Photo D. Yarrow).
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Table 1. Median ages of major Trigonopterus clades as inferred in BEAST. (51, calibration strategy 1with Java biogeographical calibration n
points; (S2, calibration strategy 2 with the Carabus mitochondrial substitution rate interval; all ages are in Myr.

(Stage (950) (52 median age (95 Cl)
clade C1 26.60 (23.27-30.09) 25.77 (20.60-32.70)

0v500L % s uado 205y BioBuysiiqndAsaposjeforsos:

percentage
Akaike weight

seems to reflect the actual relative species diversity in the two clades, one species poor and the other one
with marked diversification after colonization. The same pattern was also found in New Caledonian
Exocelina diving beetles [60,61]; in that case a species-poor older clade and a diverse younger one,
with the older species in marginal habitats, thus possibly indicating replacement. The diversification
of Trigonopterus in New Caledonia was relatively late in the context of other lineages of the genus, well
after New Guinea and Sulawesi (figure 3), and more comparable to the Lesser Sunda Islands.

Both New Caledonian clades have comparably long branches, which might be explained by
(i) extinction of ancestral species on New Caledonia or the now-submerged land nearby or (ii) lack
of sampling in New Caledonia or the Solomon Islands, Vanuatu, Fiji and Samoa. We can, however,
partially reject the ancient island-hopping hypothesis. While the long branches potentially allow for an
island-hopping scenario, this would not predate the proposed Late Eocene emergence of Grand Terre.
We also reject an ancient origin of New Caledonian Trigonopterus and thus the museum hypothesis, as
their main diversification was fast and during the past 10 Myr, whereas the museum hypothesis would
require a crown and a diversification of New Caledonian Trigonopterus over at least 80 Ma [31]. Even if
our biogeographic dating analysis is not optimal (but see [50]), the differences between our estimates
and the requirements for a Gondwanan origin are so distinct that we can here reject such a scenario.
Instead, we suggest a recent long-distance dispersal with a Melanesian origin for the New Caledonian
Trigonopterus. Dispersal of these weevils across deep water straits (e.g. Wallace’s Line) has in fact been
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robustly documented previously [16,58]. The actual dispersal mechanism for these flightless beetles
remains to be tested empirically, but it might involve larvae floating safely contained in or between
branches or logs [16]. The small body size of Trigonopterus weevils (1.5-6.0 mm, but usually 2-4 mm)
could also favour other dispersal mechanisms. However, a lifestyle of inhabiting the lower vegetation
or the leaf-litter, plus their compact body and their heavy chitinization make their dispersal by strong
winds highly improbable. External attachment to birds appears rather impossible, though birds may
act as vector if the weevils are ingested inside fruits or seeds. All this is somewhat speculative and the
currently unknown larval development of Trigonopterus weevils would be important information to let us
choose among hypotheses. Additional sampling from nearby archipelagoes (Solomons, Vanuatu) located
between New Guinea and New Caledonia would complete our understanding of the biogeographical
history of this endemic fauna. There may be some faunal exchange between New Caledonia and these
islands. In fact, New Caledonia may have played a role as a stepping stone to the Pacific islands further
east. However, the fauna of New Guinea and Australia clearly emerged as the cradle of Trigonopterus
evolution: basal diversification extended for more than 10 Myr in this area before other islands to the west
and east were colonized. All Australian clades representing the foliage-dwelling lifestyle are contained in
the present analysis; they are somewhat scattered among the equally foliage-dwelling Papuan species of
clade C11 and containing the foliage-dwelling clade C14 of New Caledonia. The absence of the edaphic
T. australis group of three species from the tip of Cape York [40] may require a later re-interpretation of the
origin of New Caledonian clade C12 to which it may be related. Past extinction events of the Australian
fauna may be missing in this scenario and are hard to consider with the absence of fossils. A situation as
presented by the subgenus Brassospora of Nothofagus [62] cannot be ruled out and a colonization of New
Caledonia from Northern Australia could in fact be a possibility, although not supported by our present
analysis. In any case, long-range transoceanic dispersal set the stage for a later radiation of Trigonopterus
in New Caledonia. The wide distribution across the Indomalayan Archipelago and across Wallace’s and
Lydekker’s Lines suggests that transport over open ocean was not uncommon during the evolution of
Trigonopterus [16].

In summary, our study suggests that transoceanic dispersal of flightless animals and their subsequent
fast diversification is one factor contributing to New Caledonia’s exceptional diversity.
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