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Archdukes, barons, counts, dukes and marquises are forest-dwelling butterflies found in mainland Asia and most
islands of the Indo-Australian archipelago west of Wallace’s Line, with only a few species occurring as far east
as the Bismarck Archipelago. This pattern is unusual among butterfly groups of the region, which often present
more widespread geographical ranges bearing little signature of Lydekker’s and Wallace’s Lines. Using a molecular
multimarker matrix, we infer the first dated phylogeny for this clade and estimate its biogeographical history. We
recover the Oriental genus Euthalia as polyphyletic, although other genera are monophyletic. The clade originated in
continental Indomalaya in the late Oligocene ~24 Mya, when the Indo-Australian archipelago was at one of the most
dynamic stages of its orogeny. Multiple independent colonization events towards the Lesser Sunda Islands, Moluccas,
Australia and New Guinea suggest the relative permeability of Lydekker’s and Wallace’s Lines to these butterflies.
Colonization of Melanesia took place twice, probably before the recent formation of Sulawesi. The study of Indo-
Australian Adoliadini provides additional evidence that biogeographical barriers long thought to prevent exchange
between the Asian and Australian biotas are, in fact, permeable especially to vagile insect lineages in the region.

ADDITIONAL KEYWORDS: Bayesian relaxed clocks — endemism — historical biogeography — Limenitidinae —
Miocene —Wallacea.

INTRODUCTION has since been the focus of biological research aiming
at reconstructing the evolution and diversification of
clades in this archipelagic landscape through space and
time at an increasingly finer scale. Our understanding
of the TAA geological assembly has never been this
precise, in turn allowing biogeographical hypotheses
to be tested in an interdisciplinary framework (Hall &
Holloway, 1998).

There are clear demarcations in the geographical
distributions of clades in the IAA; in fact, some of the
most abrupt biotic transitions in the world can be found
here, e.g. Wallace’s and Lydekker’s Lines (the eastern
margin of the Asian Sunda Shelf and the western
margin of the Australian Sahul Shelf, respectively).
Between them lies the Wallacean Archipelago or
*Corresponding author. E-mail: emmanuel.toussaint@ville-ge.ch Wallacea, what is often described as a transition zone

The Indo-Australian archipelago (IAA) is a composite
geographical area stretching from continental
Southeast Asia towards Melanesia, encompassing what
Alfred Russel Wallace coined the Malay Archipelago
(Wallace, 1869; Lohman et al., 2011). This large tropical
archipelago comprises landmasses of very different
geological origins and a biota that reflects this complex
tectonic history. His work in the Malay Archipelago
made it obvious to Wallace (1869) not only how
important geological processes were in the formation
of faunal mosaics, but how natural history could help
to inform geologists. The geological history of the IAA
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between Oriental and Australian biota (Lohman et al.,
2011). Some biogeographers have invoked vicariance,
such as biota being moved on microcontinental
fragments (Gondwanan material that broke off New
Guinea, for example, or drifting Pacific island arcs)
from east to west (including Wallace, 1863), to explain
extant mosaic distribution patterns in the TAA, in
particular in Wallacea. Microcontinents carrying
Australian biota would collide with others housing
Oriental biota and create larger islands containing
clades with very different biogeographical histories.
Others took a more dispersionalist view (such as
Wallace, 1876) or both (for a detailed review, see
Lohman et al., 2011). At present, geological evidence
suggests that ‘Fragmentation occurred, but has been
driven by extension related to subduction, accompanied
by complex vertical movements, creating mountains
and deep basins influencing biogeography’ (Hall, 2017:
343). In short, this presents a framework to test more
regional diversification processes empirically over
time, rather than invoking long-distance (passive)
transport of biota from remote source areas.

Increasing numbers of detailed studies of highly
diverse Wallacean arthropods further highlight the
role of this geologically complex region as a cradle of
diversity. At the same time, it becomes apparent that
geographical lineage diversification patterns across
Wallacea might also be rather complex, involving
multiple crossings of Wallace’s and Lydekker’s Lines
and with different directionality, e.g. with mainland
Asian, Sunda or Melanesian source areas (e.g.
Condamine et al., 2013, 2015; Toussaint & Balke,
2016; Toussaint et al., 2018; Rowe et al., 2019), even
by flightless insects (e.g. Ténzler et al., 2014, 2016;
Toussaint et al., 2015). This transition zone consists of
three major geographical features, namely Sulawesi,
the Moluccas and the lesser Sunda Islands.

Sulawesi is the largest island of Wallacea and is
situated right in the heart of the IAA, between Borneo,
New Guinea, the Philippines and the lesser Sunda
Islands. It features a particularly diverse biota of
different geographical origin, predominantly Oriental
but also Australian, that has greatly fascinated
Wallace (1876) and many naturalists after him
(reviewed by Lohman et al., 2011; Stelbrink et al.,
2012). In a vicariance scenario, biota would have been
transported on microcontinents of the Sula Spur, which
is a roughly westward-pointing spur-like extension of
the New Guinea region that drifted northwards with
the Australian plate (Hall, 2017: fig. 5). Collision of
such fragments with West Sulawesi would form the
island of Sulawesi, with its central and southern
parts being of Australian origin, and explain mosaic
biogeographical patterns (see Stelbrink et al., 2012).
In fact, summarizing results from different molecular
phylogenetic studies, Stelbrink et al. (2012) suggested

that faunal assembly was driven by both vicariance
and dispersal and also suggested that Pliocene
fluctuations of sea level might have facilitated faunal
exchange. Further back in time, Miocene colonization,
possibly also mediated by sea-level changes, from the
(Oriental) west and subsequent diversification in a
proto-Sulawesi island setting was proposed, e.g. for
endemic squirrels (Nannosciurinae; Hawkins et al.,
2016). These studies imply that the region featured
different islands that would have catalysed initial
clade diversification during the Neogene, after collision
of the Sula Spur and (north) western parts of Sulawesi
(see Stelbrink et al., 2012; Hall, 2017; Nugraha &
Hall, 2018). Nugraha & Hall (2018) present the latest
tectonic interpretation of Sulawesi and provide new
palaeogeographical maps for the postcollisional history
at close intervals for the past 20 Myr, including maps
considering shifts of the coastline (the configuration of
land and sea in the region) caused by changes in sea
level. Sulawesi gained its present relief and shape only
over the past 5 Myr, for the most part rather recently,
from 2 Mya.

In contrast, the much smaller Moluccan islands,
including Halmahera, Ambon and Seram, which link
Sulawesi with New Guinea, in addition to the lesser
Sunda Islands, such as Bali, Lombok, Sumbawa, Flores
and Timor, which link Sundaland with the Sahul shelf
islands in the east, remain much less studied (Ténzler
et al., 2016).

Set against this geological background, we here
investigate the evolutionary history of some of
the most emblematic arthropods of the region, i.e.
nymphalid butterflies in the tribe Adoliadini, namely
the archdukes, barons and dukes. The tribe Adoliadini
is distributed across the Old World tropics and
comprises many genera. A recent study by Dhungel &
Wahlberg (2018) allowed the relationships of several
genera within Adoliadini to be inferred and recovered
five main clades within the tribe. One of these clades,
referred to as the Asian Euthalia group by Dhungel &
Wahlberg (2018), was inferred as sister to the rest of
Adoliadini and comprises exclusively Indo-Australian
species. This clade (hereafter referred to as the IAA
Adoliadini s.s.), including six genera, is the focus of
this study. Its internal phylogenetic relationships
remain little studied to date. A recent study conducted
by Dhungel & Wahlberg (2018) inferred the large
genus Euthalia (referred to as barons and dukes) as
paraphyletic, but their limited taxon sampling did not
allow additional discussion of the systematics within
this clade. The genus Euthalia is by far the most
species-rich one, with possibly up to ~100 described
species, distributed from India to the Moluccas.
Few studies have been conducted to investigate the
systematics in this group (but see Yago et al., 2011),
and it is very likely that this genus might, in fact,
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represent multiple independent lineages (Dhungel
& Wahlberg, 2018). The genera Lexias (referred to
as archdukes) and Tanaecia (referred to as counts
and earls) are also relatively diverse and equally
widespread in the TAA, and their systematics remain
uncertain. The genus Bassarona (approximately
eight species, referred to as marquises) is distributed
from Assam to the Lesser Sunda Islands, while the
two monotypic genera Dophla and Euthaliopsis are
respectively widespread in the TAA (from India to
Sula) or endemic to the Moluccas and New Guinean
region. In their study based on 18 loci, Dhungel &
Wahlberg (2018) recovered the genus Bassarona as
sister to a clade comprising two subclades, the first
including the genera Lexias and Euthaliopsis and the
second including the genera Dophla, Euthalia and
Tanaecia. These results are in line with a recent and
comprehensive phylogeny of butterflies (Chazot et al.,
2019). Nevertheless, the relationships among species
groups and the monophyly of the different genera
within TAA Adoliadini s.s. remain elusive.

Using a new molecular phylogenetic dataset,
combined with existing data, in the present study we
aim at inferring a new and comprehensive phylogeny
of TAA Adoliadini s.s. and understanding the extent to
which the assembly of the IAA impacted the evolution
of these butterflies. We also investigate the relevance
of the major biogeographical lines for the evolution
of the archdukes, barons, counts, dukes, earls and
marquises.

MATERIAL AND METHODS
TAXON SAMPLING AND MOLECULAR BIOLOGY

We sampled legs of specimens from dry-pinned
collections to assemble a comprehensive taxon sampling
of TAA Adoliadini s.s. We obtained new genomic DNA
for 66 specimens and also included sequence data
retrieved from GenBank for 96 additional specimens,
representing 60 species out of ~176 described species
in the group. The majority of missing species belong to
the diverse genus Euthalia and are distributed mainly
in China and the Indochinese peninsula. Therefore,
the aims of our study are unlikely to be impacted by
these missing tips in the phylogeny. Total genomic DNA
of collection specimens was extracted from leg tissues
using a Qiagen DNeasy kit (Hilden, Germany). Using
the polymerase chain reaction protocols described by
Wahlberg & Wheat (2008), we amplified and sequenced
the following loci: cytochrome ¢ oxidase subunit 1 (CO1,
654 bp), NADH-ubiquinone oxidoreductase chain 5
(ND5,825 bp), elongation factor 1 alpha (EF'1A,1194 bp),
ribosomal protein S5 (RPS5, 639 bp) and wingless
(414 bp). We selected four outgroups based on the
phylogenetic affinities of IAA Adoliadini s.s. butterflies

as inferred by Espeland et al. (2018) and rooted the
phylogenies with Parthenos sylvia (Espeland et al.,
2018). DNA sequences were edited in Geneious R11
(Biomatters, Auckland, New Zealand), aligned using
MUSCLE (Edgar, 2004) and with the reading frames
checked under Mesquite v.3.5 (http:/mesquiteproject.
org). All new sequences were deposited in GenBank
(accession numbers MN993658 - MN993848).

PHYLOGENETIC ANALYSES

We estimated the best partitioning scheme and best
models of nucleotide substitution with ModelFinder
(Kalyaanamoorthy et al., 2017). The five protein-
coding loci were divided a priori by codon positions for
a total of 15 initial partitions. To find the most likely
tree, 200 maximum likelihood (ML) independent tree
searches were conducted in IQ-TREE v.1.6.6 (Nguyen
et al., 2015), with two calculations of nodal support:
ultrafast bootstrap (UFBoot) and SH-aLLRT tests. We
generated 1000 replicates for UFBoot (“-bb’ command,
Minh et al., 2013; Hoang et al., 2018) and SH-aLRT
(‘-alrt’ command) (Guindon et al., 2010). We took into
account recent revisions of the UFBoot calculation
and suggestions to avoid overestimation of this metric
using a hill-climbing nearest neighbour interchange
(NNI) to optimize each bootstrap tree with the
command (“-bnni’ command; Hoang et al., 2018). When
discussing branch support, we refer to ‘strong’ support
as SH-aLRT > 80 and UFBoot > 95.

DIVERGENCE TIME ESTIMATION

We estimated species-level phylogenetic relationships
and divergence times simultaneously in a Bayesian
framework using BEAST v.1.8.4 (Drummond et al.,
2012). To do so, we kept only one representative per
species; in general, the one with the maximum genetic
coverage. The best partitioning scheme and models
of substitution were selected in PartitionFinder2
(Lanfear et al., 2017) using the greedy algorithm
and the Bayesian information criterion across all
models included in BEAST (option models = beast).
The dataset was partitioned a priori, similar to the
ModelFinder analysis (see previous subsection). The
resulting partitioning scheme included six partitions,
one for each mitochondrial codon position and one for
each nuclear codon position. To take into account the
importance of clock partitioning, we implemented:
(1) a unique clock (analyses A1l and A2); (2) two
clocks, one for the mitochondrial partitions and one
for the nuclear partitions (analyses A3 and A4); or
(3) a different clock for each partition (analyses A5
and A6). We assigned a Bayesian lognormal relaxed
clock model to the different clock partitions. We also
tested different tree models by using a Yule (pure
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Figure 1. Maximum likelihood phylogenetic relationships of Indo-Australian Adoliadini (IAA) s.s. based on a populational
taxon sampling. The topology was derived from the best-scoring maximum likelihood tree out of 200 tree searches conducted
in IQ-TREE using a multimarker dataset for IAA Adoliadini s.s. butterflies. Nodal support, expressed as a combination of
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birth, A1, A3 and A5) or a birth—death model (A2, A4
and A6) in different analyses. Clock rates were set
with an approximate continuous time Markov chain
rate reference prior (Ferreira & Suchard, 2008). All
analyses consisted of 20 million generations, with a
parameter and tree sampling every 2000 generations.
We estimated marginal likelihood estimates (MLEs)
for each analysis using path sampling and stepping-
stone sampling (Xie et al., 2010; Baele et al., 2012,
2013), with 1000 path steps, and chains running for
one million generations, with a log likelihood sampling
every 1000 cycles.

We relied on the extensive fossil-based dating
frameworks of Espeland et al. (2018) for our dating
analysis. In this study, the split corresponding to the
root of our phylogeny (Parthenos sister to the rest
of the genera) was recovered with a median age of
44.85 Mya (95% credibility interval = 31.6-63.9 Mya).
Therefore, we constrained the root of the tree with a
conservative uniform prior encompassing the 95%
credibility intervals (31.6—63.9 Mya) estimated for this
node by Espeland et al. (2018).

ANCESTRAL RANGE ESTIMATION

We used the R package BioGeoBEARS v.1.1 (Matzke,
2018) to estimate ancestral ranges in IAA Adoliadini
s.s. The analyses were performed only under the
dispersal—extinction—cladogenesis (DEC) model (Ree,
2005; Ree & Smith, 2008). Other models included in
the package BioGeoBEARS, which included founder-
event speciation, were not used, to take into account
the ongoing debate regarding the possibility of
comparing these models with others not including
such parameters (Ree & Sanmartin, 2018). We used
the BEAST maximum clade credibility (MCC) tree
from the best analysis (see Results and Discussion)
with outgroups pruned. We used the following areas in
the BioGeoBEARS analyses: continental Indomalaya
(), Philippines (P), Greater Sunda Islands (G),
Sulawesi (S), Lesser Sunda Islands (L), Moluccas (M)
and Australia and New Guinea (N).

We took into account the dynamic geological
history of the TAA by designing five time slices with
different dispersal rate scalers following several
geological studies focusing on this region and providing

palaeo-reconstructions (Hall, 2012, 2013). Time
slice 1 (TS1; root age 22.5 Mya) encompasses the
period predating the acceleration of orogenies in the
Philippines archipelago, Wallacea and New Guinea
(Yumul et al., 2008, 2009; Hall, 2013; Toussaint et al.,
2014), with deep water separating the Greater Sunda
Islands and Sulawesi from Moluccas, Australia and
New Guinea, with Indomalaya connected to Greater
Sunda Islands by land, some land in west Sulawesi, a
volcanic arc in the Philippines with some land northeast
of the Greater Sunda Island, and another volcanic arc
with some land north of New Guinea, the latter having
subaerial landmasses in the Bird’s Head. Time slice 2
(T'S2; 22.5-12.5 Mya) encompasses the active formation
of the TAA, with east and west Sulawesi colliding, the
oceanic part of the Philippines rafting from the east to
the northwest, and shallow water separating Sunda and
Sahul. Time slice 3 (T'S3; 12.5-7.5 Mya) encompasses
the formation of the Lesser Sunda Islands and enhanced
connectivity throughout the IAA and, in particular, in
the western side of the archipelago between Sulawesi,
Greater Sunda Islands and Continental Indomalaya.
Time slice 4 (TS1; 7.5-2.5 Mya) encompasses the
period of reduced connectivity between the oceanic
Philippine arc and Melanesia, at this time separated
by deep water, but also between Sulawesi and the
Lesser Sunda Islands, which were also separated by a
deep-water corridor. Time slice 5 (T'S5; 2.5 Mya to the
present) encompasses periods of reduced connectivity
between continental Indomalaya and Greater Sunda
Islands and between Sulawesi and the Philippines. The
dispersal rate scaler values were selected according to
terrain and water body positions throughout the time
frame of the age of the group. The maximum number of
areas per ancestral state was fixed to four. To reduce the
computational burden, ancestral states corresponding
to unrealistic disjunct areas were removed manually
from the list of possible states.

We performed different analyses with the parameter
w constrained to zero (M1) or one (M2) or left free
(M3), in addition to a null model excluding manually
modified dispersal rate scalers and adjacency matrices
(MO). The parameter w modifies the user-specified
matrix of dispersal rate scalers. If w = 1, the best-
fitting matrix is the one that was designed manually
by the user. However, if w = 0 the manually designed

UFBoot and SH-aLLRT tests, is presented according to the key in the box. Major clades are labelled. Photographs of live
specimens of species distributed across the tree are presented, from top to bottom: Euthalia formosana (credit: Hsu Hong
Lin), Euthalia nais (credit: Dinesh Valke), Bassarona dunya (credit: Pavel Kirillov), Dophla evelina (credit: A. K. Firos),
Euthalia lubentina (credit: Vinayaraj), Euthaliopsis aetion (credit: Antonio Giudici), Lexias aeetes (credit: A. S. Kono), Lexias
pardalis (credit: Charlie Jackson), Euthalia anosia (credit: Subhendukhan), Euthalia monina (credit: U. Ajith), Euthalia
phemius (credit: Atudu), Euthalia aconthea (credit: Vineeth Viswanath), Tanaecia lepidea (credit: Vinayaraj), Tanaecia julii
(credit: J. M. Garg), Tanaecia palguna (credit: C. W. Gan) and Tanaecia pelea (credit: Charles J. Sharp).
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Figure 2. Bayesian divergence time estimates and historical biogeography of Indo-Australian Adoliadini (IAA) s.s. The
chronogram was derived from the best BEAST analysis using two Bayesian relaxed clocks, a Yule tree model of speciation,
a secondary calibration from Espeland et al. (2018) and based on the species-level dataset of IAA Adoliadini s.s. Posterior
probabilities (PP) are given for each node when PP <1.0. The node ages correspond to median estimates from the post-burn-in
posterior distribution. The 95% credibility intervals are given for each node. Current geographical distributions of all taxa
are given on the right side of the figure and coded according to the coloured key in the box. The result of the BioGeoBEARS
ancestral range estimation under the DEC model are presented for each node with the highest relative probability as
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matrix of dispersal rate scalers is not the best fit
and is discarded. When w <1lorw > 1butw =#0or 1,
then the impact of the dispersal rate scaler matrix is
respectively decreased or increased, and the differences
between different dispersal multipliers are decreased or
increased. As a result, we performed two null analyses
with w = 0 and w = 1, in addition to an alternative
model with w as a free parameter (one additional free
parameter). We then compared the different models
using the Akaike information criterion (AIC) calculated
using the function getAIC in R.

RESULTS AND DISCUSSION
PHYLOGENETICS AND TAXONOMY

Our ML phylogenetic inference, based on the extensive
dataset at the population level, recovers a moderately
well-supported phylogenetic hypothesis for the
group (Fig. 1; Supporting Information, Appendix S1).
Branching patterns between major clades are, in some
cases, discordant with the species-level phylogeny
inferred in BEAST (Fig. 2; Supporting Information,
Appendix S2). We recover the IAA Adoliadini s.s. as
monophyletic in both Bayesian Inference and ML, in
line with Dhungel & Wahlberg (2018) and Chazot et al.
(2019) (Figs 1, 2).

The genus Euthalia is recovered as polyphyletic,
with five different clades spread across the tree in
both BI and ML, although their respective placement
differs between BI and ML (Figs 1, 2). The first clade in
ML is sister to the rest of IAA Adoliadini s.s., whereas
it is recovered in a more derived position in BI (Fig. 2).
This clade comprises several Euthalia species from
China and Taiwan and, based on both reconstructions,
should be given a generic status to accommodate the
polyphyly of Euthalia. We propose the establishment
of a monophyletic genus-level classification in a
separate taxonomic paper including morphological
evidence. The second lineage in Euthalia is the single
species Euthalia nais, recovered as sister to Bassarona
in both ML and BI. The third lineage, comprising the
type species Euthalia lubentina and other species, is
recovered as the sister group of the monotypic genus
Dophla (Dophla evelina) in both BI and ML (Figs 1,
2). The fourth lineage, broadly corresponding to the
concept of the Euthalia aconthea group, is recovered as
sister of the clade Tanaecia + Euthalia kanda in both
BI and ML (Figs 1, 2). This clade should also be raised
to genus status with respect to the divergence between

genera in other parts of the tree. Likewise, Euthalia
kanda, which is recovered as sister to Tanaecia in
both BI and ML (albeit with moderate to low support),
should be raised to genus level to accommodate the
polyphyly of Euthalia. Again, we propose to address
the formal classification of the group in a separate
paper. As a similar pattern, in a different part of the
tree, the monotypic genus Euthaliopsis (Euthaliopsis
aetion) is recovered as sister to the monophyletic genus
Lexias in both BI and ML (Figs 1, 2).

ORIGINS AND BIOGEOGRAPHY

Our BEAST analyses all converged well, and
divergence time estimates are largely comparable
between analyses (Table 1). The best analysis, based
on a comparison of marginal likelihood estimates,
included two clocks and a Yule pure birth model. The
resulting chronogram of this analysis is presented in
Figure 2 along with the BioGeoBEARS estimation
of ancestral ranges under the DEC model (Table 2;
Supporting Information, Appendix S3). We present
the results of analysis M3, in which the parameter w
was free, because this analysis is statistically a better
fit than the other models (Table 2). In this analysis,
w = 4.117, indicating that dispersal rate scalers are
of importance to estimate the evolutionary history
of the group. Although the BEAST analysis recovers
moderately supported phylogenetic relationships,
it is unlikely that our biogeographical patterns are
biased, considering the overwhelming distribution of
TAA Adoliadini s.s. west of Wallace’s Line. The timing
and directionality of transitions across Lydekker’s
and Wallace’s Lines are also unlikely to be affected,
because the relevant nodes are often well supported
and relatively derived in the phylogeny (Fig. 2).

The TAA Adoliadini s.s. diverged from their sister
lineage Bebearia in the Oligocene ~29 Mya. Given
that TAA Adoliadini s.s. butterflies are very likely
to be sister to an Afrotropical clade (Dhungel &
Wahlberg, 2018; Chazot et al., 2019), they possibly
represent yet another example of Old World tropical
disjunct distribution that might be linked to late
Neogene climatic disruptions (e.g. Aduse-Poku et al.,
2009, 2015; Kaliszewska et al., 2015; Sahoo et al.,
2018; Toussaint et al., 2019). We estimate an origin of
modern TAA Adoliadini s.s. between the Philippines
and continental Indomalaya ~24 Mya, in line with
Chazot et al. (2019), who recovered an origin for the
clade ~21.4 Mya. This ancestral range estimation is

recovered in BioGeoBEARS. Range expansion and biogeographical barrier transgressions are indicated according to the
key in the box on the left. A drawing of Tanaecia julii is presented at the bottom left corner of the figure, recovered from
the chapter of Arthur Gardiner Butler entitled ‘A monographic revision of the Lepidoptera hitherto included in the genus
Adolias, with descriptions of new genera and species’ (Proceedings of the Zoological Society of London, vol. 1868, plate XLV).
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consistent across analyses except for the null model
MO, which recovers an origin in Indomalaya (Table 2;
Supporting Information, Appendix S3).

The origin of modern IAA Adoliadini s.s. corresponds
to a period of time when the Philippines were merely
a volcanic arc, with limited terranes connected to
continental Indomalaya by shallow-water corridors
and small volcanic island chains (Hall, 2013). After
this origin, we estimate range-expansion events
towards the Greater Sunda Islands in the early
Miocene in several parts of the tree (Fig. 2). This might
reflect active dispersal from continental Indomalaya
or simply vicariance as the Greater Sunda Islands
are progressively detaching from the continental
landmass starting from the early Miocene (Hall, 2013).
We infer an early transgression of both Wallace’s and
Lydekker’s Lines ~17 Mya in the clade comprising
Euthaliopsis and Lexias (Fig. 2). At that time, shallow-
water corridors connected the Philippines with north
Sulawesi and possibly even New Guinea (Hall, 2013),
which might have allowed dispersal via stepping
stones north of the IAA rather than through its centre.
More recent transgressions of the biogeographical
barriers occurred between the late Miocene and the
Pleistocene, probably facilitated by the formation of
the Wallacea and satellite island chains (Hall, 2013).
The overall biogeographical history of the group is very
dynamic, with multiple range-expansion events across
the tree and throughout the evolution of the clade.

Surprisingly, only a few species are nowadays
endemic east of Wallace’s or Lydekker’s Lines.
Species from the IAA Adoliadini s.s. distributed in
the Lesser Sunda Islands, Moluccas or Melanesia are
often widespread, with ranges extending towards the
Greater Sunda Islands and/or continental Indomalaya.
The reason for this pattern is unclear, but it might be
the result of several non-exclusive hypotheses. This
pattern might result from competition with other
butterfly groups of Australian origin or that settled
in the Australian region before the IAA Adoliadini
s.s. Competition could take the form of host-plant or
ecosystem carrying capacities being reached and not
allowing a more diverse assemblage of lineages to
dwell in the same regions. This pattern might also be
the result of the recent colonization of the Australian
region, with the present geographical distribution of
the clade representing the early stages of a future
broader distribution, with additional endemic taxa on
remote archipelagoes and island chains, as observed
in other TAA butterflies (e.g. Miiller & Beheregaray,
2010; Miiller et al., 2010; Condamine et al., 2013, 2015;
Toussaint & Balke, 2016).

The evolutionary history of IAA Adoliadini
s.s. butterflies provides additional evidence that
biogeographical barriers in the IAA are largely
permeable to vagile insects and do not seem to impede
the colonization of new regions. In the case of butterflies,
it is difficult to understand the potential reasons why

Table 1. Results of the different BEAST runs for Bayesian estimation of divergence times in Adoliadini butterflies

Clocks Model PS MLE SS MLE Age of IAA Adoliadini s.s.
Al 1 Yule -19430.914 -19431.107 21.9 (14.1-30.9)
A2 1 BD -19433.323 -19433.353 21.2 (13.8-30.6)
A3 2 Yule -19391.036 -19390.995 23.7(15.9-34.3)
A4 2 BD -19391.645 -19391.239 23.3 (15.3-34.1)
A5 7 Yule -19413.910 -19414.497 24.5 (17.2-34.3)
A6 7 BD -19411.433 -19411.721 23.9 (16.7-33.9)

Abbreviations: BD, birth death; IAA, Indo-Australian archipelago; PS MLE, path sampling marginal likelihood estimate; SS MLE, stepping-stone

marginal likelihood estimate.

Table 2. Results of the BioGeoBEARS analyses of ancestral range estimation in Adoliadini butterflies

Model R. Scalers Adjacency Number of d e w LnL AIC Origin of IAA
matrix parameters Adoliadini s.s.

MO No No 2 0.017 0 - -219.31 442.62 I

M1 Yes* Yes 2 0.034 0.001 0 -191.56 387.12 IP

M2 Yes Yes 2 0.059 0.004 1 -180.86 365.12 IP

M3 Yes Yes 3 0.158 0.005 4.117 -171.93 349.86 1P

Abbreviations: AIC, Akaike information criterion score calculated using the R function getAIC;d, dispersal rate; e, extinction rate; IAA, Indo-Australian
archipelago; LnL, log-likelihood; R. Scalers, dispersal rate scaler matrix; Yes™*, the rate scaler matrix is present, but because w = 0 it is technically not

informative in the optimization; w, scaling parameter.
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some lineages are less ubiquitous than others in some
parts of the IAA. The tight link between butterflies
and their host plants is certainly a promising avenue
to investigate the mechanisms of range expansion and
lineage diversification in the region. Additional work is
therefore needed to gather host-plant record data and
generate more robust phylogenies to enable proper
reconstruction of ancestral host-plant preferences
and host-plant biogeographical histories and, in turn,
allow the fine-scale estimation of IAA butterfly clade
evolution.
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Appendix S3. BioGeoBEARS ancestral range estimation results in IAA Adoliadini s.s.
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