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Abstract

Minute moss beetles (Hydraenidae) are one of the most speciose and widespread fami-
lies of aquatic Coleoptera, with an estimated 4000 extant species, found in the majority
of aquatic habitats from coastal rock pools to mountain streams and from the Arctic Cir-
cle to the Antarctic islands. Molecular phylogenetic works have improved our under-
standing of the evolutionary history of the megadiverse Hydraena, Limnebius and
Ochthebius in recent years, but most genera in the family have not yet been included in
any phylogenetic analyses, particularly most of those which are restricted to the South-
ern Hemisphere. Using a multimarker molecular matrix, sampling over 40% of described
species richness and 75% of currently recognized genera, we infer a comprehensive
molecular phylogeny of these predominantly Gondwanan Hydraenidae. Whilst the gen-
era we focus on are morphologically diverse, and currently classified across all four
hydraenid subfamilies, our phylogenetic analyses suggest that these Gondwanan genera
may instead constitute a single clade. As a result of our findings, the African genus Oomt-
elecopon Perkins syn.n. is shown to nest within Coelometopon Janssens, the
New Zealand Homalaena Ordish syn.n. and Podaena Ordish syn.n. are synonymised with
Orchymontia Broun, and the South African Pterosthetops Perkins syn.n. is synonymised
with Prosthetops Waterhouse, resulting in Pterosthetopini Perkins syn.n. being synony-
mised with Prosthetopini Perkins. Mesoceratops Bilton & Jach gen.n. is erected to accom-
modate six former members of Mesoceration Janssens, which is shown to be
polyphyletic. We propose the replacement name Orchymontia ordishi Jach & Bilton nom.
n. for Homalaena dilatata Ordish, 1984 (now a junior homonym); altogether 39 new com-
binations are proposed. Our Bayesian divergence times infer an origin for this ‘Gond-
wana group’ of genera in Africa plus Madagascar in the mid-Cretaceous and suggest that
both vicariant and dispersal processes, together with extinctions, have shaped the bio-
geographic history of these beetles in the Southern Hemisphere during the Cretaceous,

resulting in geographically conserved extant lineages. Finally, we reconstruct ancestral
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habitat shifts across our phylogeny, revealing numerous changes in habitat occupancy in

these genera, including multiple origins of fully terrestrial, humicolous taxa in different

beetle evolution, Coleoptera phylogenetics, dispersal, Gondwanan biogeography, vicariance
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Beetles have colonized water multiple times, with many of these habi-
tat shifts resulting in widespread and speciose radiations (Bilton
et al, 2019; Jich & Balke, 2008; Short, 2018). With an estimated
4000 extant species (ca. 2000 of which are described), the minute
moss beetles or Hydraenidae, may be second only to the diving bee-
tles (Dytiscidae) in terms of global water beetle diversity. Hydraenids
are found in all biogeographical regions, from the Arctic to the Antarc-
tic islands and include a high proportion of narrowly endemic taxa,
particularly in areas with tropical and subtropical/Mediterranean cli-
mates (e.g., Perkins, 2011, 2017; Perkins & Balfour-Browne, 1994;
Trizzino et al., 2013). Most hydraenids are small, as their most com-
monly used English name suggests, modal body size in the family
being around 2 mm. Given this small size, the majority of species are
associated with relatively shallow water, particularly under stones in
streams and rivers or around the margins of small waterbodies, both
lentic and lotic, although a number of shifts to different habitats,
including the evolution of fully terrestrial lifestyles, are known within
the family (e.g., Perkins, 2017; Villastrigo et al., 2019).

In terms of global species diversity, two genera, Hydraena Kuge-
lann and Ochthebius Leach contain the majority of known hydraenids
(Trizzino et al., 2012; Villastrigo et al., 2019), together comprising over
1500 species. Both of these genera, as currently defined, are globally
distributed, with representatives in both the Northern and Southern
hemispheres. The third relatively speciose hydraenid genus is Limne-
bius Leach, with about 160 described members (Rudoy et al., 2016),
most from the Holarctic, but with species on all continents except
South America and Antarctica. In addition to these three, 38 other
hydraenid genera are currently recognized, the majority of which are
restricted to the Southern Hemisphere (Hansen, 1998; Jich
et al., 2016). Phylogenies centring on all three of the large genera have
been generated recently and have, in each case, included representa-
tives of closely related, smaller genera. Trizzino et al. (2012) explored
the evolution of the cosmopolitan, hyperdiverse genus Hydraena,
including its sister genus Adelphydraena Perkins in their analyses.
Rudoy et al. (2016) used a molecular phylogeny to investigate the
evolution of male genital morphology in Limnebius and included
Laeliaena Sahlberg, recovered as sister to Limnebius. More recently,
Villastrigo et al. (2019) investigated the phylogeny of the Ochthebiini,
including, as well as most species groups/subgenera of Ochthebius,
two smaller Southern Hemisphere ochthebiine genera (Meropathus
Enderlein and Tympanogaster Janssens).

However, the majority of hydraenid genera have not been included

in any molecular phylogenetic analyses to date. Three of these,

Protochthebius Perkins, Prototympanogaster Perkins and Typallopatrum
Perkins, clearly belong to the Ochthebiini and were considered by Vil-
lastrigo et al. (2019), although not included in their molecular sampling.
The remaining ones are found mostly in the Southern Hemisphere, and
occupy the entire range of habitats utilized by extant Hydraenidae (with
the exception of saline waters), from mountain streams, wetlands, rock
pools and wet rock faces, to forest litter (see Bilton, 2014a, 2014b,
20153, 2015b, 2015¢, 2017, 2018; Perkins, 2005a, 2008, 2009, 2017,
Perkins & Balfour-Browne, 1994). These genera, here termed the
‘Gondwana group’, are morphologically and ecologically diverse
(Figure 1) and classified across all four currently recognized hydraenid
subfamilies (see Table 1; Hansen, 1998). We acknowledge that other
hydraenid genera, such as Tympanogaster, are also restricted to parts of
former Gondwana, and that widespread genera (e.g., Hydraena) are
highly speciose on former Gondwanan terranes, but use this terminol-
ogy here to link genera considered explicitly in our analyses. Prostheto-
pinae Perkins were originally erected for seven genera restricted to
Africa including the Malagasy Region (Perkins & Balfour-Browne, 1994),
to which Jach (1998a) added Sebasthetops Jach from South Africa. The
prosthetopine genera have been divided amongst six tribes, most of
which include a single genus (Table 1; Perkins & Balfour-Browne, 1994;
Hansen, 1998). Orchymontiinae Perkins were proposed to accommo-
date three genera of lotic New Zealand hydraenids (Homalaena Ordish,
Orchymontia Broun and Podaena Ordish), which Beutel et al. (2003) con-
sidered basal within the family, based on an analysis of head morphol-
ogy. Within Hydraeninae, Perkins (1997) proposed three new tribes:
Hydraenidini (South America), Parhydraenini (sub-Saharan Africa and
the Malagasy Region) and Madagastrini (Malagasy Region and India)
(see Bilton, 2021; Perkins, 1980, 1997, 2009, 2017). Perkins (2017)
moved the Madagastrini from the Hydraeninae to the Prosthetopinae,
on the basis of antennal segmentation. In the Ochthebiinae, Perkins
(1997) proposed the tribe Ochtheosini, to accommodate the morpho-
logically rather isolated Ochtheosus Perkins from Chile (see
Jach, 1998Db). Finally, Jiach and Diaz (2003, 2004) described two mono-
typic genera from China: Edaphobates Jach & Diaz and Ginkgoscia Jach &
Diaz, which have apparent morphological similarities with Ochtheosini
and Madagastrini. Many of the higher taxa of Perkins (1997) are based
largely on the structure of the antennal pocket, hypomeron and ventral
vestiture. The evolution and character polarity of these features remain
unclear, however and, given their critical role in gas exchange
(Perkins, 1997), such character systems may be subject to convergence
due to strong selection associated with habitat shifts (see Jich &
Diaz, 1998).

Here we present a comprehensively sampled phylogeny of the

‘Gondwana group’ of Hydraenidae, based on a combination of
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FIGURE 1 Morphological diversity of Gondwanan genera of Hydraenidae (not to scale). (a) Parhydraena cataracta Bilton—1.75 mm,
humicolous; (b) Parhydraenida unicornis Jich & Delgado—1.60 mm, madicolous; (c) Podaena aotea Delgado & Palma—1.85 mm, lotic;

(d) Coelometopon glenavoni Bilton—2.45 mm, madicolous; (e) Sebasthetops omaliniformis Jach—2.30 mm, lotic; (f) Nucleotops nimbaceps Perkins &
Balfour-Browne—1.92 mm, humicolous; (g) Pterosthetops pulcherrimus Bilton—2.20 mm, madicolous; (h) Mesoceration piketbergense Bilton &

Mlambo—1.90 mm, lotic.

mitochondrial and nuclear DNA sequence data. We go on to recon-
struct the historical biogeography of these beetles, using a dated phy-
logeny and investigate habitat shifts during their evolution. We also
propose a number of taxonomic changes to accommodate our results,

including the description of one new genus.

MATERIALS AND METHODS
Taxon sampling

Our analyses included 112 of the 275 described species of the ‘Gond-
wana group’ (Table S1; Appendix S1). This included 23 of the 31 previ-
ously recognized genera and representatives from almost all regions
where these beetles are found (see Table 1).

As outgroups we used 49 species; 42 hydraenids, representing all
other major lineages and most genera (Adelphydraena, Hydraena, Lae-
liaena, Limnebius, Meropathus, Ochthebius and Tympanogaster). In the
case of megadiverse genera (Hydraena, Limnebius and Ochthebius) we

included members of a number of subgenera or species groups. In
addition, we added five Ptiliidae, the most likely hydraenid sister
group (Lawrence et al, 2011; McKenna et al, 2019; Zhang
et al., 2018) and members of two other staphylinoid families: Dero-
lathus Sharp sp. (Jacobsoniidae) and Nicrophorus humator (Gleditsch)
(Silphidae).

DNA extraction and sequencing

Specimens were killed and preserved in absolute ethanol in the
field. DNA was extracted with a standard phenol-chloroform
extraction, or using commercial extraction kits (typically Qiagen
DNeasy Tissue Kit, Hildesheim, Germany) following manufacturers’
instructions. DNA samples and voucher specimens are retained
in the collections of the Museo Nacional de Ciencias Naturales
(MNCN, Madrid, Spain) and Naturhistorisches Museum Wien
(NMW, Vienna, Austria). We sequenced fragments of six genes in
five sequencing reactions, three mitochondrial [(i) 5 end of the
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TABLE 1 Synopsis of current classification of the ‘Gondwana group’ of Hydraenidae, with total number of species, number of species
included in analyses and antennal configurations (see Appendix S1 for a complete updated checklist)

Current No. DNA Antennal segments total

Genus subfamily Current tribe spp. spp. (stem + club)
Nucleotops Perkins & Balfour-Browne, 1994 Prosthetopinae Nucleotopini 4 2 11 (6 + 5)
Protosthetops Perkins, 1994 Prosthetopinae Protosthetopini 0 10 (6 + 4)
Prosthetops Waterhouse, 1879 Prosthetopinae Prosthetopini 7 7 8(6+2)
Pterosthetops Perkins, 1994 Prosthetopinae Pterosthetopini 14 9 8(6+2)
Sicilicula Balfour-Browne, 1958 Prosthetopinae Parasthetopini 9 2 11(6 +5)
Parasthetops Perkins & Balfour-Browne, Prosthetopinae Parasthetopini 22 6 7-11(6 + 1-5)

1994
Sebasthetops Jach, 1998 Prosthetopinae Parasthetopini 2 2 9(6+ 3)
Mesoceration Janssens, 1967 Prosthetopinae Parasthetopini 56 27 7-11 (6 + 1-5)
Davidraena Jach, 1994 Prosthetopinae Madagastrini 3 0 11 (6 + 5)
Gondraena Jach, 1994 Prosthetopinae Madagastrini 2 0 11(6 + 5)
Madagaster Perkins, 1997 Prosthetopinae Madagastrini 8 2 11 (6 + 5)
Menomadraena Perkins, 2017 Prosthetopinae Madagastrini 6 0 11 (6 + 5)
Trinomadraena Perkins, 2017 Prosthetopinae Madagastrini 1 0 11 (6 + 5)
Coelometopon Janssens, 1972 Prosthetopinae Coelometoponini 23 7 11 (6 +5)
Oomtelecompon Perkins, 2005 Prosthetopinae Coelometoponini 4 3 11 (6 + 5)
Orchymontia Broun, 1919 Orchymontiinae 14 3 9 (6 + 3)
Podaena Ordish, 1984 Orchymontiinae 11 4 11 (8-9 + 2-3)
Homalaena Ordish, 1984 Orchymontiinae 7 3 10(8 + 2)
Hydraenida Germain, 1901 Hydraeninae Hydraenidini 5 3 11(6 + 5)
Parhydraenida Balfour-Browne, 1975 Hydraeninae Hydraenidini 12 4 11(6 +5)
Haptaenida Perkins, 1997 Hydraeninae Hydraenidini 1 0 11(6 +5)
Pneuminion Perkins, 1997 Hydraeninae Parhydraenini 10 3 11 (6 + 5)
Parhydraena Orchymont, 1937 Hydraeninae Parhydraenini 21 10 10(5 +5)
Protozantaena Perkins, 1997 Hydraeninae Parhydraenini 6 1 10 (5 + 5)
Discozantaena Perkins & Balfour-Browne, Hydraeninae Parhydraenini 12 4 10(5 + 5)

1994
Riberazantaena Bilton, 2021 Hydraeninae Parhydraenini 2 2 10(5 + 5)
Decarthrocerus Orchymont, 1948 Hydraeninae Parhydraenini 4 1 10(5+5)
Parhydraenopsis Perkins, 2009 Hydraeninae Parhydraenini 3 3 10(5 + 5)
Ochtheosus Perkins, 1997 Ochthebiinae Ochtheosini 2 2 11(6 + 5)
Edaphobates Jach, 2003 Ochthebiinae Ochtheosini 1 0 9(4 +5)
Ginkgoscia Jach, 2004 Ochthebiinae Ochtheosini 1 0 11(6 +5)

cytochrome c¢ oxidase subunit | (the standard barcode, Herbert
et al, 2003) (COI-5); (ii) 3’ end of cytochrome c oxidase subunit |
(COI-3); (iii) 5" end of 16S RNA (16S) plus the leucine tRNA transfer
(tRNA-Leu) plus 5 end of NADH dehydrogenase subunit | (NAD1)];
and two nuclear [(iv) an internal fragment of the large ribosomal unit,
28S RNA (28S) and (v) an internal fragment of the small ribosomal unit,
18S RNA (18S)] (see Table S3 in Appendix S1 for details on primers
used and typical PCR conditions). Sequences were assembled
and edited with Geneious R11 (Biomatters, USA; Kearse et al., 2012);
new sequences were deposited in GenBank with accession numbers
ON937331-0ON937424, ON937426-0ON937531, ON938211-
ON938311, ON949952-ON950044 and ON968874 (see Table S1).

Phylogenetic inference

All cleaned consensus sequences were imported into Geneious R11
and aligned at the nucleotide level using MUSCLE (Edgar, 2004) for
the protein-coding locus CO1 and MAFFT (Katoh & Standley, 2013)
for ribosomal loci (18S, 28S) and var_mtDNA. The resulting alignments
for each locus were then concatenated in Geneious to perform phylo-
genetic inference analyses. The final matrix comprised 161 taxa for a
total of 3542 aligned nucleotides.

We used IQ-TREE 2.1.2 COVID-edition (Minh et al., 2020) to
conduct 100 maximum likelihood tree searches with the concatenated

dataset. The optimal partitioning scheme and models of nucleotide
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substitution were selected using ModelFinder (Kalyaanamoorthy
et al., 2017) as implemented in IQ-TREE and using the Akaike Infor-
mation Criterion corrected (AICc). We relied on six initial partitions,
one for each codon position for the CO1 locus, and one partition for
each remaining locus (18S, 28S and var_mtDNA). Branch support was
investigated using 1000 ultrafast bootstraps (UFBoot; Hoang
et al,, 2018) and 1000 SH-aLRT tests (Guindon et al., 2010).

Divergence time estimation and historical
biogeography

We used BEAST 1.10.4 (Suchard et al., 2018) to infer divergence
times with the best scoring IQ-TREE ML tree (out of 100 tree
searches) as a fixed input. The best partitioning scheme and models of
nucleotide substitution were searched using PartitionFinder2 (Lanfear
et al, 2017) with the greedy algorithm and the AICc based on the
same six initial partitions as in ModelFinder (see above). The resulting
scheme had the same number of partitions (six in total). Since there
are no reliable fossil calibrations for the ‘Gondwana group’, we chose
to use secondary calibrations from higher-level taxonomic studies of
Coleoptera. The recent development of robust dated trees for Cole-
optera (e.g., Baca et al, 2021; McKenna et al., 2019; Toussaint,
Bloom, & Short, 2017; Zhang et al., 2018) allows the ages of more
derived lineages to be constrained with a higher degree of confidence
than previously. Here, we relied on estimates from the phylogenomic
tree of McKenna et al. (2019) based on a comprehensive RNAseq
dataset including most families of beetles and a carefully chosen fossil
set. We used three secondary calibrations implemented as normal
prior distributions based on the 95% credibility intervals for the corre-
sponding nodes in McKenna et al. (2019): stem Hydraenidae
(mean = 149.4, SD = 14.85), stem Jacobsoniidae (mean = 181.5,
SD = 14.0) and stem Silphidae (mean = 198.75, 13.34). We used dif-
ferent tree (Yule versus birth-death) and clock priors (one clock for all
partitions versus one clock for each partition) to test for potential dif-
ferences in resulting time estimates. Marginal likelihood estimates
(MLE) were calculated for each run using stepping-stone sampling
(Baele et al., 2012), with default settings in BEAUti 1.10.4 (Suchard
et al., 2018). We generated the Maximum Clade Credibility (MCC)
trees of each run with median divergence age estimates in TreeAnno-
tator 1.10.4 (Suchard et al., 2018).

We used the R-package BioGeoBEARS 1.1.2 (Matzke, 2013) to
estimate ancestral ranges in the ‘Gondwana group’ based on the
BEAST MCC tree of the preferred analysis (see Section 3) without
outgroups. Analyses were performed under the Dispersal Extinction
Cladogenesis (DEC) model (Ree & Smith, 2008) and a likelihood imple-
mentation of the Dispersal-vicariance analysis (DIVA) model
(Ronquist, 1997) (i.e., DIVALIKE in BioGeoBEARS). The geographical
distribution of the ‘Gondwana group’ was extrapolated from the liter-
ature and our own unpublished records. The following areas were
used in BioGeoBEARS analyses: Madagascar/Reunion, Mainland
Africa, South America and New Zealand. We used a simple approach

not relying on time stratification or manually set dispersal rate scalers,
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considering the reduced number of areas and the evolutionary time-

line of the group.

Habitat preference evolution

We reconstructed ancestral habitat preference across the phylogeny
of the ‘Gondwana group’ using the function make.simmap (SYM
model and 1000 simulations) in the R package phytools 0.7-80
(Revell, 2012). All outgroups were pruned from the best scoring
BEAST MCC tree (see Section 3). Habitat preferences were inferred
from the literature and personal unpublished data (Bilton & Jich). All
habitat preference observations are summarized in Table S2, with the
following categories: madicolous (wet rock faces, M), humicolous

(damp forest/plant litter, H), lotic (Lo), lentic (Le) and rock pools (RP).

RESULTS
Molecular phylogeny

Our IQ-TREE ML tree (Figure 2) provides moderate support for the
monophyly of the ‘Gondwana group’ with respect to other major
lineages of the family (SH-aLRT = 99; UFBoot = 89). The first split
within this clade separates Madagaster Perkins from all other
genera (SH-aLRT = 77; UFBoot = 50). The remaining genera of the
group are mostly recovered as monophyletic in our analyses and are
divided into two major clades, albeit with low support (SH-aLRT = 61;
UFBoot = 33), corresponding to ([Hydraenidini + Ochtheosus] +
Parhydraenini) and ([Coelometoponini + Orchymontiinae] + Prosthe-
topinae), respectively. The Neotropical Hydraenidini, are apparently
paraphyletic, since the Chilean Ochtheosus (currently included in the
Ochthebiinae) is recovered within them, as sister to Hydraenida albeit
with moderate support (SH-aLRT = 83; UFBoot = 83). The Afrotropi-
cal Parhydraenini are recovered as monophyletic with strong support
(SH-aLRT = 95; UFBoot = 96), with all genera themselves being
monophyletic, with strong support levels (SH-aLRT >80 and UFBoot
>95). The Afrotropical Coelometoponini are recovered as sister to the
New Zealand Orchymontiinae, albeit with moderate support (SH-
aLRT = 89; UFBoot = 76). The two genera currently placed in Coelo-
metoponini are not reciprocally monophyletic, however; Oomtelec-
opon Perkins nesting within Coelometopon with strong support (SH-
aLRT = 100; UFBoot = 100). Within Orchymontiinae, whilst included
species of Homalaena and Orchymontia are recovered as monophy-
letic, Podaena is paraphyletic with respect to them, this arrangement
receiving strong support (SH-aLRT = 100; UFBoot = 100). With the
exception of Madagaster (see above) genera currently assigned to
Prosthetopinae are recovered in a single clade, with strong support
(SH-aLRT = 100; UFBoot = 100). Within this, all currently recognized
genera are recovered as monophyletic, with the exception of Prosthe-
tops Waterhouse/Pterosthetops Perkins, which are intermixed with
strong support (SH-aLRT = 100; UFBoot = 100) and Mesoceration,
which is polyphyletic; some members of the M. rivulare Perkins &
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FIGURE 2 Maximum likelihood tree obtained with IQ-TREE (see text), showing branch support, current tribal/subfamily assignment and
revised generic placements. Habitus photographs, top left to bottom right as follows: Madagaster bergsteni Perkins, Parhydraenida unicornis Jach &
Delgado, Parhydraena cataracta Bilton, Protozantaena cf. labrata Perkins, Riberazantaena grebennikovi (Perkins), Oomtelecopon disjunctum Bilton,
Podaena aotea Delgado & Palma, Sebasthetops omaliniformis Jach, Nucleotops nimbaceps Perkins & Balfour-Browne, Mesoceration foggoi Bilton,
Pterosthetops pulcherrimus Bilton, Prosthetops wolfbergensis Bilton, Parasthetops porcellus Bilton & Mesoceration piketbergense Bilton & Mlambo.
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FIGURE 3 Historical biogeography the ‘Gondwana group’ of Hydraenidae. Chronogram derived from the BEAST analysis using median age
estimates with 95% credibility intervals show as horizontal grey bars. Image: Orchymontia latipalpis (Ordish) comb.n., Desmond W. Helmore,
Wikimedia Commons.
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Balfour-Browne species group clustering with Nucleotops Perkins &
Balfour-Browne rather than other Mesoceration.

Divergence time estimation and historical
biogeography

Based on MLE comparison, the BEAST analysis using three clocks and
a birth-death model was a better fit than the rest (stepping-stone
sampling MLE = —75,927.891). Our results derived from this analysis
suggest that the ‘Gondwana group’ originated in the mid-Cretaceous,
about 101.2 MYA (Cl 83.2-119.8 MYA) (Figure 3). Optimal dates for
splits between major lineages are also mostly in the Cretaceous. For
instance, the split between Madagaster and the rest of the group is
dated at about 96.4 MYA (Cl 79.2-113.7 MYA), while the two subse-
quent lineages ([Hydraenidini + Ochtheosus] + Parhydraenini) and
([Coelometoponini + Orchymontiinae] + Prosthetopinae), respec-
tively, originated at about 87.6 MYA (Cl 71.5-104.4 MYA) and about
91.9 MYA (Cl 75.6-109.4 MYA). Radiations within those major line-
ages mostly begin in the Palaeogene, including South African Prosthe-
tops/Pterosthetops at about 52.8 MYA (42.1-65.5 MYA) and
Mesoceration, although clearly some extant species are much younger,
having diverged in many cases during the Pleistocene (see Figure 3).

BioGeoBEARS analyses performed under the DEC model (see
Figure S1) inferred an origin of the ‘Gondwana group’ in Africa/Mada-
gascar/South America, whilst analyses performed under the DIVALIKE
model (see Figure S2) inferred an origin in Africa/Madagascar. The
DIVALIKE model received a significantly better likelihood score
(DIVALIKE LnL = 23.88; DEC LnL = 28.81) and the pattern derived
from this analysis is therefore the one discussed hereafter. A vicariant
pattern was inferred at the origin of the group, with a cladogenetic
event resulting in an African ancestor for the clade sister to Madaga-
ster, whilst the latter was immediately restricted to Madagascar. We
infer two range expansions from Africa to Africa/South America and
from Africa to Africa/New Zealand in the Cretaceous about 90 MYA,
both followed by vicariance events, with geographic shifts happening
immediately after the splits.

Habitat preference evolution

Ancestral state reconstruction analysis revealed that the common
ancestor of the ‘Gondwana group’ was aquatic and lotic, which is still
the most common habitat occupied by members of the clade, with a
number of shifts to other habitats in most major lineages (Figures 4
and S3). In particular, there have been six apparent shifts to madicoly,
four being in the ancestors of Madagaster, Parhydraenida Balfour-
Browne, Coelometopon and Sicilicula Balfour-Browne. In Prosthetops/
Pterosthetops there was a shift from a lotic to madicolous lifestyle in
the common ancestor of the group, followed by a single shift to occu-
pying lentic mountain rock pools in one lineage. Within this rock pool
clade, there has been a further shift back to madicoly in Pterosthetops

chrysomallus Bilton. Shifts to humicolous terrestrial habitats have
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occurred four times, in the ancestors of Ochtheosus, Nucleotops and
the Parhydraena toro Perkins species group, as well as in the common
ancestor of Discozantaena Perkins, Riberazantaena Bilton, Decarthro-

cerus Orchymont and Parhydraenopsis Perkins.

Taxonomy

We describe one new genus and formally synonymise four others and
one tribe, in light of our phylogenetic analyses. These taxonomic
changes are presented below.

Genus Mesoceratops Bilton & Jach gen.n.

Type species: Mesoceration rivulare Perkins & Balfour-Browne, 1994:
87, herein designated.

Diagnosis: With the following combination of characters: 10-11
antennomeres (6 + 4-5 in club); maxillary palpi and legs elongate;
labrum with deep, narrow apicomedian emargination; pronotal reliefs
strongly shining, without microreticulation, finely and sparsely punc-
tate; 8th elytral interval strongly carinate; elytra without granules; 1st
and 2nd elytral series confluent posteriorly; elytral disc with six series
of punctures between suture and carina, 5th and é6th series confluent
basally; abdomen with ventral plastron vestiture on sterna 1-4 and
basal part of 5; distal lobe of aedeagus distinct, bearing gonopore,
curved and elongate, attached subapically to right side of main piece
in ventral view (see Figure 5).

Etymology: From Mesoceration and Nucleotops, reflecting the
apparent relationships and taxonomic history of this clade.

Distribution: Endemic to South Africa, most species found in the
Fynbos Biome of the Western Cape, but extending to the Drakensberg.

This new genus is phylogenetically distant from Mesoceration in
our molecular analyses, appearing sister to Nucleotops. It includes
most former members of the Mesoceration rivulare group sensu Per-
kins and Balfour-Browne (1994) and Perkins (2008). The exceptions
are Mesoceration jucundum Perkins & Balfour Browne and Mesocera-
tion periscopum Perkins, which clearly group with other Mesoceration
species in our analyses. Mesoceratops gen.n. thus incorporates six
species: Mesoceratops foggoi (Bilton, 2015) comb.n., Mesoceratops han-
tam (Bilton, 2014a) comb.n., Mesoceratops maluti (Perkins, 2008)
comb.n., Mesoceratops rapidensis (Perkins, 2008) comb.n., Mesocera-
tops rivularis (Perkins & Balfour-Browne, 1994) comb.n., and Meso-
ceratops splendorum (Perkins & Balfour-Browne, 1994) comb.n. Of
these, M. maluti, M. rapidensis and M. splendorum are assigned to
Mesoceratops gen.n. tentatively, in the absence of molecular data.
Mesoceratops gen.n. can be distinguished from most Mesoceration on
the above combination of characters, the form of the aedeagus
(Figure 5) allowing its members to be distinguished from M. jucundum
and M. periscopum, which instead have the gonopore situated on a
small projection at the apex of the main piece.

Genus Orchymontia Broun, 1919

Homalaena Ordish, 1984 syn.n.

Podaena Ordish, 1984 syn.n.

Type species: Orchymontia spinipennis Broun, 1919: 108, by
monotypy.
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FIGURE 4 Habitat preference evolution in the ‘Gondwana group’ of Hydraenidae reconstructed in phytools. Photo shows rock pool habitat
at Stadsaal Cave, Cederberg, Western Cape Province, South Africa, occupied by Prosthetops wolfbergensis Bilton.

Diagnosis: With the following combination of characters: 9-11 antennal pocket absent, area clothed with hydrofuge pubescence;
antennomeres (6-9 + 2-3 in club); antennal club loosely defined and antennae held in genal antennal pocket at rest; metaventral plaques
non-pubescent; legs and maxillary palpi moderately elongate; hypomeral absent; ventral plastron vestiture dense, short and scale-like.
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FIGURE 5 Mesoceratops gen. n., habitus (a,b) and aedeagi (c,d). (a,c) Mesoceratops hantam (Bilton); (b,d) Mesoceratops foggoi (Bilton). Scale

bars (a,b) = 1 mm; (c,d) = 0.1 mm.

Whilst included members of Orchymontia and Homalaena appear
monophyletic in our molecular analyses, Podaena is clearly polyphy-
letic with respect to them, and our preferred approach is to synony-
mise the three genera here. This results in the following new
combinations: Orchymontia acuta (Ordish, 1984) comb.n., Orchymontia
aotea (Delgado & Palma, 2010) comb.n.,, Orchymontia carinata
(Ordish, 1984) comb.n., Orchymontia dentipalpis (Ordish, 1984) comb.
n., Orchymontia dispersa (Ordish, 1984) comb.n., Orchymontia glabri-
ventris (Ordish, 1984) comb.n., Orchymontia hauturu (Delgado &
Palma, 2010) comb.n., Orchymontia kuscheli (Ordish, 1984) comb.n.,
Orchymontia latipalpis (Ordish, 1984) comb.n., Orchymontia mariae
(Delgado & Palma, 2010) comb.n., Orchymontia moanaiti (Delgado &
Palma, 2010) comb.n., Orchymontia nelsonensis (Ordish, 1984) comb.

n., Orchymontia obscura (Ordish, 1984) comb.n., Orchymontia setosa
(Ordish, 1984) comb.n., Orchymontia spatulata (Ordish, 1984) comb.n.,
Orchymontia trochanteralis (Ordish, 1984). Homalaena dilatata
Ordish, 1984 becomes a junior homonym of Orchymontia dilatata
Ordish, 1984, for which we propose the new name Orchymontia
ordishi Jach & Bilton nom.n.
Genus Coelometopon Janssens, 1972

Oomtelecopon Perkins, 2005 syn.n.

Type species: Coelometopon leleupi Janssens, 1972: 387, by origi-
nal designation.

Diagnosis: With the following combination of characters:
11 antennomeres (6 + 5 in club); basal antennal segments elongate;
legs and maxillary palpi relatively short; head highly modified, with
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very large, markedly raised compound eyes; dorsal surface rough,
granulate, elytra with costae and granulate callosities; granules bearing
setae which are simple, bifurcate or trifurcate; hypomeron strongly
produced anteriorly; hypomeral antennal pocket deep, narrowly
opened ventrally, dorsally opened at well-developed postocular emar-
ginations; abdominal ventrites strongly sclerotized, with deep grooves
between segments; plastron vestiture (absent in some species) com-
posed of scale-like setae.

Our molecular analyses show that Oomtelecopon nests within
Coelometopon, hence its synonymization herein, resulting in the fol-
lowing new combinations: Coelometopon disjunctum (Bilton, 2015)
comb.n., Coelometopon namaqum (Bilton, 2016) comb.n., Coelometo-
pon sebastiani (Perkins, 2005) comb.n., Coelometopon setosum
(Perkins, 2005) comb.n.

Genus Prosthetops Waterhouse, 1879

Pterosthetops Perkins, 1994 syn.n.

Type species: Prosthetops capensis Waterhouse, 1879:
533 (= Ochthebius megacephalus Boheman, 1851: 587), designated by
Orchymont, 1913: 319.

Diagnosis: With the following combination of characters: 8 anten-
nomeres (6 + 2 in club); legs moderately to strongly elongate; maxil-
lary palpi short and robust, length equal to or less than width of
anterior margin of clypeus; elytra with 9-10 serial puncture rows;
posterior margins of abdominal ventrites 1-4 with linear row of elon-
gate, flattened setae; metacoxae without ventral vestiture, at least
medially.

As redefined here, Prosthetops includes 21 species, all of which
are endemic to South Africa. The synonymy of Pterosthetops results in
the following new combinations: Prosthetops baini (Bilton, 2014a)
comb.n., Prosthetops brincki (Perkins & Balfour-Browne, 1994) comb.
n., Prosthetops chrysomallus (Bilton, 2017) comb.n., Prosthetops
coriaceus (Bilton, 2014a) comb.n., Prosthetops equestrius (Perkins &
Balfour-Browne, 1994) comb.n., Prosthetops harrisoni (Perkins &
Balfour-Browne, 1994) comb.n., Prosthetops hawequas (Perkins, 2008)
comb.n., Prosthetops impressus (Perkins & Balfour-Browne, 1994)
comb.n., Prosthetops indwei (Bilton, 2014a) comb.n., Prosthetops niti-
dus (Bilton, 2016) comb.n., Prosthetops pulcherrimus (Bilton, 2014a)
comb.n., Prosthetops swartbergensis (Bilton, 2014a) comb.n., Prosthe-
tops tuberculatus (Bilton, 2014a) comb.n., Prosthetops uitkyki (Bilton,
2014a) comb.n. The synonymy of Pterosthetops also results in Pter-
osthetopini Perkins, 1994 syn.n. becoming a junior synonym of Pros-
thetopini Perkins, 1994, which we formally propose here.

DISCUSSION

Our molecular phylogenetic analyses suggest the monophyly of a
morphologically disparate group of hydraenid genera, primarily distrib-
uted across landmasses which were formerly part of the superconti-
nent of Gondwana. Support values for some deeper nodes within this
radiation are often rather weak, a finding consistent with a relatively
rapid radiation which is difficult to resolve using a limited set of loci
(e.g., Robertson et al., 2018; Bank et al., 2021). As detailed above, the
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genera we focus on here are currently classified across all hydraenid
subfamilies, and split into numerous tribes. The beetles included in
this ‘Gonwana group’ are morphologically diverse (see Figure 1), rang-
ing in body size from about 1.3-4.2 mm, making them the largest
known hydraenids, if not quite the smallest (Jach et al.,, 2016). The
range of external morphological variation is in sharp contrast to the
relative morphological uniformity seen within the three most diverse
hydraenid genera: Hydraena, Ochthebius and Limnebius. This likely
relates to the wide range of habitats colonized by the ‘Gondwana
group’, particularly conspicuous shifts to madicoly and terrestrial life-
styles, but may also reflect greater intrinsic morphological lability in
these hydraenids. Given this wide ecological and morphological diver-
sity, it is very difficult to identify clear morphological synapomorphies
for the clade, and we refrain from formal changes to higher level clas-
sification here. One of the best morphological candidates, however, is
the configuration of the antennae, most members of the ‘Gondwana
group’ having 11 antennomeres, typically comprising three long basal
meres, three shorter intermediate meres and five club meres (see
Table 1). This basic pattern has been modified in some genera,
through fusion of meres, particularly in the club, and indeed some
genera, such as Mesoceration and Parasthetops, include species with
different numbers of club meres as a result of an apparent process of
mere fusion (Perkins & Balfour-Browne, 1994). Perkins (1997: 200)
notes that this process may be particularly associated with the coloni-
zation of benthic microhabitats, where an increasing reliance on plas-
tron respiration reduces functional constraints on the antennae for
renewal of the air reservoir. As stated by Perkins (2017) ‘it appears
that [antennal segmentation] ... is enigmatically one of the best key
characters for the diagnosis’ of this clade morphologically.

A review of the ‘Gondwana group’ of genera

Genera which we consider members of the ‘Gondwana group’ (see
Table 1) are discussed below, in order of their current subfamilial and
tribal placements within the Hydraenidae.

Hydraeninae (Hydraenidini)

Genus Haptaenida Perkins, 1997
Type species: Haptaenida huggerti Perkins, 1997: 169, by original
designation.

Monotypic and lentic; known only from the type locality, a shal-
low lakeshore at 4100 m in the Ecuadorian Andes. Morphologically
close to Parhydraenida, as discussed by Perkins (1997); placed here
tentatively in the absence of molecular data.

Genus Hydraenida Germain, 1901
Type species: Hydraenida ocellata Germain, 1901, by monotypy.

Five lotic Neotropical species, all restricted to Chile
(Hansen, 1998; Jach, 1998c; Perkins, 1980; Ribera, 2000). Apparently
sister to Ochtheosus in our phylogeny, perhaps reflecting the geo-

graphical proximity of these two genera.
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Genus Parhydraenida Balfour-Browne, 1975
Type species: Parhydraenida reichardti Balfour-Browne, 1975: 42, by
original designation.

Twelve madicolous Neotropical species, eleven restricted to SE
Brazil and one in Ecuador, described by Balfour-Browne (1975), Per-
kins (1980) and Jach and Delgado (2018). Our phylogenetic analyses
suggest Parhydraenida as sister to a clade comprised of two other

Neotropical genera, Hydraenida + Ochtheosus.

Hydraeninae (Parhydraenini)

Genus Decarthrocerus Orchymont, 1948
Type species: Decarthrocerus jeanneli Orchymont, 1948: 35, by original
designation.

Four humicolous species, from forest litter in central and eastern
Africa.

Genus Discozantaena Perkins & Balfour-Browne, 1994
Type species: Discozantaena genuvela Perkins & Balfour-Browne, 1994:
124, by original designation.

Twelve humicolous species, all of which are restricted to
South Africa, mostly in the Fynbos biome (Bilton & Perkins, 2012;
Perkins, 2005a; Perkins & Balfour-Browne, 1994). Discozantaena spe-
cies can be found both by sifting litter and shore washing, many spe-
cies being associated with the margins of small streams and seeps
(Bilton, pers. obs.).

Genus Parhydraena Orchymont, 1937
Type species: Hydraena brevipalpis Régimbart, 1906: 276, by original
designation.

A total of 21 species, most of which are aquatic, but with a shift
to humicoly in the P. toro species group, which currently comprises
five species (Bilton, 2018; Perkins, 2009), two of which are repre-
sented in our molecular phylogeny. Nineteen of the 21 species known
are restricted to South Africa, the other two occurring in Kenya and
South Sudan respectively (Perkins, 2009). The terrestrial species of
the P. toro group included in our analyses nest within the wider
South African radiation.

Genus Parhydraenopsis Perkins, 2009
Type species: Parhydraena cooperi Orchymont, 1948: 721, by original
designation.

Three known species, all restricted to mountain streams and
seepages in the Ethiopian Highlands (see Perkins, 2009). Several new
species are awaiting description.

Genus Pneuminion Perkins, 1997
Type species: Pneuminion velamen Perkins, 1997: 172, by original
designation.

Ten humicolous species, all endemic to South Africa (Bilton &
Perkins, 2012; Perkins, 1997, 2004a). Perkins (2009) noted, from a
morphological perspective, the rather isolated position of Pneuminion
amongst similar African genera, something which is reflected by its
sister grou position wrt. this group of genera in our molecular ana-
lyses. Pneuminion retains the 11-segmented antennal configuration

which we consider may be an ancestral feature of the ‘Gondwana
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group’, whilst all other former Parhydraenini have 10 antennomeres,
something which has arisen through a reduction in the number of
stem segments, probably via fusion of two of the shorter intermediate
meres.

Genus Protozantaena Perkins, 1997

Type species: Protozantaena labrata Perkins, 1997: 175, by original
designation.

Seven species, five in Madagascar, one (P. labrata) from Namibia
and one (P. birdi Bilton) recently described from South Africa
(Bilton, 2022; Perkins, 1997, 2009, 2017). Collecting data suggest a
mix of aquatic and humicolous habits. The species included in our ana-
lyses, P. birdi from South Africa is morphologically very close to
P. labrata and was found in small mountain streams, both in the water
and on wet margins.

Genus Riberazantaena Bilton, 2021
Type species: Protozantaena grebennikovi Perkins, 2009: 47, by original
designation.

Contains two humicolous species from the Eastern Arc Mountain
forests of Tanzania, one of which was previously described as a Proto-
zantaena. Distinguished from the latter on a number of morphological
characters. Our molecular analyses demonstrate that these beetles
are more closely related to Decarthrocerus and Parhydraenopsis, which,

like Riberazantaena, are also found in eastern and central Africa.

Ochthebiinae (Ochtheosini)

Genus Edaphobates Jach & Diaz, 2003

Type species: Edaphobates puetzi Jach & Diaz, 2003: 304, by origi-
nal designation.

Monotypic and terrestrial, described from a single female sampled
from leaf litter in a Rhododendron forest in the mountains of Sichuan,
China. Originally assigned to the Ochthebiinae, without tribal place-
ment by Jich and Diaz (2003), who listed a number of morphological
synapomorphies with Ochtheosus, including the shape of the mentum,
the denticulation of the lateral pronotal margin, ridges and a median
impression on the metaventrite, a broad median longitudinal groove
on tergite VIII and ventrite VI with a transverse ridge separating the
smooth anterior half from the pubescent posterior half. Considered
under Ochtheosini by Villastrigo et al. (2019). Tentatively placed here
in the absence of molecular data; apparently an isolated, presumably
relictual taxon.

Genus Ginkgoscia Jach & Diaz, 2004
Type species: Ginkgoscia relicta Jach & Diaz, 2004: 284, by original
designation.

Monotypic and lotic; known from four females, collected in a
stream flowing through a bamboo forest in Zhejiang, China. Originally
classified in the Ochthebiinae, without tribal placement, by Jach and
Diaz (2004), who discuss the morphology of Ginkgoscia, including a
number of characters shared with Ochtheosus on the one hand (shape
of mentum, crenulated lateral pronotal margin, structure of metaven-
trite, tergite VIII with broad median longitudinal groove and ventrite

VI with a transverse ridge separating the smooth anterior half from
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the pubescent posterior half) and Davidraena and Gondraena (structre
of maxillary palpi and antennae) on the other (Jich & Diaz, 2004).
Considered under Ochtheosini by Villastrigo et al. (2019). It is placed
here tentatively, in the absence of molecular data.

Genus Ochtheosus Perkins, 1997

Type species: Ochtheosus fungicolus Perkins, 1997: 125, by original
designation.

Two humicolous Chilean species, described by Perkins (1997) and
Jach (1998b). Originally placed in its own tribe (Ochtheosini) within
the Ochthebiinae, our molecular analyses suggest that Ochtheosus is
instead related to the Neotropical Hydraenida and Parhydraenida. In
the original description, Perkins (1997) notes a number of ways in
which the morphology of Ochtheosus deviates from all other Ochthe-
biinae, including the presence of 11 antennomeres and the structure
of the tentorium, which, amongst taxa examined, shared some fea-
tures with the New Zealand Orchymontia and some South African
Prosthetops species. Jach (1998b) also discussed the morphologically
isolated nature of Ochtheosus wrt. Other Ochthebiinae. The original
subfamily placement was apparently made on the basis of structures
of the hypomeron which, as discussed above, may be subject to con-
vergence. Whilst the exact position of Ochtheosus within the ‘Gond-
wana group’ may change with additional molecular data, it seems very

unlikely indeed that this taxon is an ochthebiine.

Orchymontiinae

Genus Orchymontia Broun, 1919

Although usually considered a basal hydraenid subfamily
(Orchymontiinae—Beutel et al., 2003; Delgado & Palma, 2000, 2010),
our analyses suggest that this genus is instead nested within the
‘Gondwana group’ of genera. As redefined here, the genus contains
32 species, all lotic and all found exclusively in New Zealand, where
they are the only diverse genus of the family (Ordish, 1984). Orchy-
montia, Homalaena and Podaena were distinguished from each other
on relatively small characters, particularly the number of antennal seg-
ments, which are known to vary within other genera of Hydraenidae,
particularly through the fusion of articles (see Beutel et al., 2003;
Perkins & Balfour-Browne, 1994), as seems to have occurred here,
with included Homalaena (10-segmented antennae) and Orchymontia
(9-segmented antennae) apparently related to different lineages of
Podaena (11-segmented antennae; apparently the ancestral condition
in the ‘Gondwana group’). The relationship between this
New Zealand clade and the African Coelometopon, suggested by our
molecular phylogenies, may appear rather unexpected on the basis of
morphology, but the highly derived habitus of Coelometopon, associ-
ated with a switch to obligate madicoly, makes the interpretation of
morphological characters difficult. In the absence of formal analyses,
however, similarities in the fine structure of ventral vestiture (see
Perkins, 1997, figures 67-70 and Perkins, 2005b, figures 64-65) and
aedeagal anatomy (see Delgado & Palma, 2000, 2010; Ordish, 1984;
Perkins, 2005b) tentatively appear to offer morphological support for
this relationship, as does abdominal anatomy, the last sternum being
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concealed beneath the penultimate in female Orchymontia and in both
sexes of Coelometopon. Larval morphology (Delgado & Palma, 2004)
suggested a relationship between Orchymontia and Hydraeninae, on
the basis of seven apparent synapomorphies. It is rather difficult to
interpret many of these larval characters, however, particularly in the
absence of larval descriptions for other genera of the ‘Gondwana
group’, but the suggested relationships apparently do not reflect the
phylogenetic position of Orchymontia. A number of new species of

this lineage are awaiting description.

Prosthetopinae (Coelometoponini)

Genus Coelometopon Janssens, 1972

As redefined, now containing a total of 27 madicolous species,
most of which are restricted to South Africa, with a handful of species
known north through the Eastern Arc Mountains to Mount Kilimanjaro
(Bilton, 2015a, 2016; Perkins, 2005b). Some Coelometopon are amongst
the largest described hydraenids (Perkins, 2005b). Originally placed in
the Madagastrini by Perkins (1997) on the basis of hypomeral features
which may represent convergent adaptations to madicoly and more
recently (Perkins, 2005b) transferred to its own tribe in the Prosthetopi-
nae. Here we infer that these highly derived hydraenids are sister to the
New Zealand Orchymontia (see discussion under that genus). Former
Oomtelecopon species are apparently sister to C. fimbriatum Perkins,
2005, itself a rather aberrant species, but not sufficiently differentiated
from remaining Coelometopon to justify placement in a separate genus.
The somewhat derived morphology of the Oomtelecopon lineage (see
Perkins, 2005b), including the reduction of ventral vestiture, may partly
result from the fact that these beetles are more terrestrial than other
Coelometopon, usually being found beside seeps rather than within
them (Bilton, pers. obs.). Eastern Arc Coelometopon are also somewhat
divergent morphologically from most South African species (see
Perkins, 2005b), but our molecular phylogeny shows that they (repre-
sented by C. madidum Janssens, 1972) are nested within the
South African radiation, and appear to represent a relatively recent
(Eocene-Oligocene) northward expansion of this clade.

Prosthetopinae (Madagastrini)

Genus Davidraena Jach, 1994
Type species: Davidraena boukali Jach, 1994: 95, by original
designation.

Described by Jich (1994) for two madicolous species from south-
ern India (Kerala and Tamil Nadu), to which Perkins (1997) added
D. bacata Perkins, 1997 from Kerala. We were unable to obtain mate-
rial of this genus for molecular analyses, but it is morphologically
close to Madagaster, and was included in the Madagastrini by
Perkins (1997).

Genus Gondraena Jach, 1994
Type species: Gondraena indica Jach, 1994: 87, by original
designation.
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Two madicolous species described by Jach (1994) from southern
India (Kerala and Tamil Nadu). We were unable to obtain material of
this genus for molecular analyses, but it is morphologically close to
Madagaster, and was included in the Madagastrini by Perkins (1997).
Genus Madagaster Perkins, 1997
Type species: Madagaster steineri Perkins, 1997: 179, by original
designation.

Endemic to Madagascar, with eight currently recognized madico-
lous species (Perkins, 2017). Our results place Madagaster at the base
of the ‘Gondwana group’.

Genus Menomadraena Perkins, 2017
Type species: Menomadraena nitedula Perkins, 2017: 171, by original
designation.

Contains six humicolous Madagascan species, all described in
Perkins (2017). Again, we were unable to obtain material of this genus
for molecular analyses, but it is morphologically close to Madagaster,
and was included in the Madagastrini by Perkins (2017).

Genus Trinomadraena Perkins, 2017
Type species: Trinomadraena clusa Perkins, 2017: 199, by original
designation.

Monotypic, madicolous and possibly belonging to Madagaster as
it is separated from this genus on relatively superficial characters. In
the absence of molecular data, however, we retain Trinomadraena as a

separate genus here.

Prosthetopinae (Nucleotopini)

Genus Nucleotops Perkins & Balfour-Browne, 1994
Type species: Nucleotops nimbaceps Perkins & Balfour-Browne, 1994:
13, by original designation.

Four humicolous species (Jich, 1999; Perkins, 2004b), all restricted
to South Africa. Sometimes apparently collected far from water, but
usually close to it, including in the mist zone around waterfalls and

rapids, on damp (but not wet) microalgal covered rocks, in leaf litter etc.

Prosthetopinae (Parasthetopini)

Genus Mesoceration Janssens, 1967
Type species: Mesoceration capense Janssens, 1967, by monotypy.

The largest genus in the ‘Gondwana group’, with 50 described
species, all of which are lotic and endemic to South Africa, mostly in
mountain streams of the Fynbos Biome (Bilton, 2015c; Perkins, 2008).
Mesoceration species also vary in the number of antennal club meres,
this ranging from six to one through an apparent fusion process
(Perkins & Balfour-Browne, 1994).

Genus Mesoceratops Bilton & Jach, gen.n.

Six lotic species, associated with fast flowing water and occasion-

ally seeps.

Genus Parasthetops Perkins & Balfour-Browne, 1994

Type species: Parasthetops nigritus Perkins & Balfour-Browne, 1994:
39, by original designation.
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Includes 22 fully aquatic species, mostly lotic, but with some also
occupying lentic microhabitats. Again, most species are restricted to
South Africa, although the genus is also represented in Namibia and
Zimbabwe (Bilton, 2017; Perkins, 2008). Parasthetops species vary in
the number of antennal club meres, this ranging from six to one through
an apparent fusion process (Perkins & Balfour-Browne, 1994).

Genus Sebasthetops Jach, 1998
Type species: Sebasthetops omaliniformis Jach, 1998c: 23, by original
designation.

Two lotic species, restricted to fast flowing riffles in cold, high alti-
tude (>1000 m) mountain streams of the Western Cape of South Africa
(Bilton, 2013a, 2015b; Jach, 1998b). Morphologically aberrant, with a dis-
tinctive broad, flattened habitus and marked sexual dimorphism, including
asymmetrical elytra in the females of S. altimontanus Bilton, 2015, unique
within the Hydraenidae (Bilton, 2015). Sister g to a large clade of South
African genera, apparently diverging in the late Cretaceous-Paleogene,
with known extant species originating much more recently in the Neo-
gene. An additional undescribed species is known only from females from
the Langeberg in the Western Cape Province (Bilton, 2013a).

Genus Sicilicula Balfour-Browne, 1958
Type species: Sicilicula teres Balfour-Browne, 1958: 136, by original
designation.

Nine species, collected from a variety of aquatic habitats, but
mostly madicolous (Perkins, 2017). Eight of these are restricted to
Madagascar; one (S. borbonica Balfour-Browne, 1958) is endemic to

Réunion (Mascarene Islands). Several new species await description.

Prosthetopinae (Prosthetopini)

Genus Prosthetops Waterhouse, 1879

As now redefined, members of the genus occur in two very differ-
ent habitat types, each of which appear to be associated with a partic-
ular suite of morphological characters, that has led to these beetles
being placed in separate genera (and indeed tribes) in the past
(Perkins & Balfour-Browne, 1994). Our phylogenetic analyses suggest
that Prosthetops evolved as a primarily madicolous lineage, with rela-
tively small body size and short appendages, which corresponds to
most members of the former Pterosthetops. A single shift to occupying
montane rock pools was associated with the evolution of larger body
size, large head, long appendages and more strongly marked sexual
dimorphism, characteristic of Prosthetops as previously defined. Pros-
thetops include the largest hydraenids known to date (Bilton, 2013b).
Within this clade there has been at least one recent (Pleistocene) shift
back to madicoly and a Pterosthetops facies, giving rise to the species

described as Pterosthetops chrysomallus Bilton, 2017.
Prosthetopinae (Protosthetopini)
Genus Protosthetops Perkins, 1994

Type species: Prosthetops kenyensis Orchymont, 1948: 56, designated
by Perkins (in Perkins & Balfour-Browne, 1994: 7).
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A single species from Kenya, not collected since its description.
Perkins and Balfour-Browne (1994) separate Protosthetops from
related genera on the basis of shorter maxillary palpi, limited leg seta-
tion and the lack of a well-developed ventral plastron vestiture. All of
these characters may be associated with the species occupying a
riparian or terrestrial habitat. Although Arambourg et al. (1935) pro-
vide a map and some notes on the sampling site (‘Camp II’) on the
eastern slope of Mt. Elgon, there is no precise information on the hab-
itat of the hydraenid specimens. Sampling was carried out in forest,
springs, streams, bogs, and techniques included washing of wet moss,
and sifting plant litter at the margin of a torrent. In the absence of
molecular data, the precise relationships of P. kenyensis remain

unclear.

Historical biogeography of the ‘Gondwana group’

All genera of the ‘Gondwana group’ included in our analyses are dis-
tributed on land masses which were formerly part of the superconti-
nent of Gondwana, across which individual clades are strikingly
geographically consistent (Figure 3). Optimal dates from the BEAST
analysis suggest that the separations between lineages primarily
occurred in the Cretaceous, with credibility intervals extending many
of these back to the Lower Cretaceous, at a time when the Gondwa-
nan landmass was actively breaking up (Mclntyre et al., 2017).

Our preferred BioGeoBEARS analysis under the DIVALIKE model
infers an origin of the ‘Gondwana group’ in Africa/Madagascar about
101.2 MYA (CI 83.2-119.8 MYA). Even taking the oldest dates from
the credibility interval into account (see Figure 3), this was at a time
when Africa and Madagascar had already separated as parts of West
and East Gondwana, respectively (Schettino & Scotese, 2005; Blackey,
2008; Seton et al, 2012; Mdller et al, 2016, 2019; Mcintyre
et al., 2017; Young et al., 2019), and we consider an African origin for
these beetles, followed by overwater dispersal to Madagascar + India
the most likely scenario for the origin of these lineages. Madagascar
began to separate from the Tanzanian coast in the Kimmeridgian
(157 Ma), and has remained at approximately the same distance from
Africa since the Aptian (120 MYA; Davis et al, 2016; Reeves
et al., 2016; Thompson et al.,, 2019). Whilst a number of relatively
short-lived land bridges may have existed between Africa and
Madagascar subsequently, the first of these is not thought to have
developed until the Late Cretaceous-Early Palaeocene (66-60 MYA,;
Masters et al., 2021), suggesting that these hydraenids crossed the
Mozambique Channel by other means. Two additional genera, Davi-
draena and Gondraena, are known from southern India. Both genera
are considered closely related to Madagaster (Perkins, 1997, 2017)
based on morphology, and whilst it was not possible to obtain fresh
material for the present study, their future inclusion in molecular phy-
logenies would clearly prove illuminating.

The ancestor of the Neotropical Hydraenida, Ochtheosus and Par-
hydraenida apparently split from related African taxa (Parhydraenini)
about 87.6 MYA (Cl 71.5-104.4 MYA). By this time, Africa and South
America were completely separated (Blakey, 2008), which would
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imply overwater dispersal, albeit across a narrower South Atlantic.
Given the credibility interval from BEAST, however, we cannot rule
out a vicariant split between these African and Neotropical lineages,
which may represent another example of West Gondwanan vicariance
to add to those discussed by Toussaint, Seidel, et al. (2017). Within
South America, the inter-relationships between genera appear to
match their biogeography; the more northerly distributed Parhydrae-
nida being sister to the temperate Chilean Hydraenida and Ochtheosus.
Within the Parhydraenini, the South African Pneuminion Perkins
diverged from the ancestor of the remaining genera about 76.5 MYA
(Cl 61.4-92.6 MYA) in the Upper Cretaceous. Whilst most of the
diversity of this lineage is found in southern Africa, Decarthrocerus,
Parhydraenopsis and Riberazantaena are East African, Parhydraena has
East African species, and Protozantaena has at some point colonized
Madagascar, although the absence of Malagasy species in our dataset
makes it impossible to date this event. In all cases, however, these
appear to represent colonisations from within a southern African
clade. A similar pattern, where species from tropical African moun-
tains are nested within Cape clades has been shown to be widespread
in a number of plant groups including Proteaceae (Galley &
Linder, 2006; Valente et al., 2010).

The New Zealand Orchymontia and Afrotropical Coelometopon
apparently diverged about 85.9 MYA (ClI 70.1-103.5 MYA). The com-
mon ancestor of these two genera is inferred to be African in BioGeo-
BEARS, and we suggest that the ancestor of Orchymontia colonized
East Gondwana from Africa by overwater dispersal, perhaps facilitated
by the Crozet and Kerguelen Plateaus, which were subaerial at least
three times 100-20 MYA (Bénard et al., 2010; Frey et al., 2020). Ana-
lagous events, albeit involving movements into Africa, have been
hypothesized from phylogenetic studies of Iridaceae (Goldblatt
et al., 2008). Such a scenario implies that members of the Coelometo-
pon/Orchymontia lineage were formerly widespread on East Gond-
wana, and have subsequently become extinct, except in New Zealand.
Extirpation from Antarctica was inevitable with the onset of almost
complete glaciation, although suitable habitats likely persisted here
until at least the middle Miocene (Anderson et al., 2011; Francis
et al, 2008; Lewis et al., 2008; Prebble et al, 2006; Rees-Owen
et al., 2018). It is slightly more difficult to account for the fact that no
members of this group occur in Australia. Ancestors of Orchymontia
likely colonized Zealandia before, or recently after; this landmass sep-
arated from East Gondwana, about 85-60 MYA (Allentoft &
Rawlence, 2012; Mclintyre et al., 2017; Neall & Trewick, 2008;
Schellart et al., 2006); Antarctica and Australia split more recently,
about 46 MYA (Mcintyre et al., 2017; Morra et al, 2013;
Upchurch, 2008). Whilst it is not impossible that some members of
the ‘Gondwana group’ persist in southern temperate Australia/Tas-
mania, this seems unlikely in light of recent work on the hydraenid
fauna of these areas (e.g., Perkins, 2006), and it appears increasingly
probable that this lineage is genuinely absent, perhaps being lost due
to increased aridity during the Neogene (Toussaint et al., 2016).
New Zealand is well-known to support a number of phylogenetically
isolated, relictual taxa, including some with no close extant relatives

elsewhere, such as the iconic tuatara (Gemmell et al., 2020). Insect
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examples include the world's only extant sooty mould beetles
(Cyclaxyridae; Gimmel et al, 2019) and Lenax mirandus Sharp
(Monotomidae), the only known surviving member of the Lenacini
Crowson (Liu et al., 2020). In Coelometopon, C. madidum and related
species in the Eastern Arc Mountains appear to represent Palaeogene
colonists from Southern Africa, C. madidum diverging from the closest
South African species in our phylogeny about 45.1 MYA (CI 32.5-
58.9 MYA).

Remaining included genera of the ‘Gondwana group’ belong to
the subfamily Prosthetopinae, and began diversifying in Africa about
65.9 MYA (Cl 51.8-81.6 MYA), in the Upper Cretaceous/Palaeogene.
Almost all members of this lineage are southern African, with diversity
at both genus and species level centred in the Fynbos Biome in the
South African Cape, where we assume much of this diversification has
occurred. This region is renowned for its exceptional floristic diversity,
around 20% of the plant species known from Sub-Saharan Africa
being found here, in <1% of the continent’s land area (Linder, 2003;
Schnitzler et al., 2011). Whilst pollen from many characteristic Fynbos
plant groups is present in deposits of Late Cretaceous/Paleogene age
from Namagualand (Scholtze, 1985), these taxa were apparently living
under a tropical climate. Tropical and subtropical, mesic forests are
usually thought to have dominated the region until the onset of sum-
mer drought about 8-10 MYA (Siesser, 1980), although the extent to
which these were mixed with open habitats remains uncertain. He
et al. (2016) showed that fire-adapted traits had evolved by the Late
Cretaceous in Haemodoraceae and Restionaceae. Similarly, Bytebier
et al. (2011) used an orchid phylogeny to estimate that fire adapta-
tions appeared in the Miocene, again predating the onset of a fully
Mediterranean climate in the region. The radiation of most of the
Cape genera also predates the onset of a Mediterranean climate;
whilst some closely related species in Mesoceration, Nucleotops, Para-
sthetops and Prosthetops, have speciated in the Plio-Pleistocene, our
phylogeny suggests a gradual accumulation of diversity in most
groups since the mid-Paleogene. Similar findings have emerged from
phylogenetic studies of a number of Cape plant lineages
(Linder, 2003; Sauquet et al., 2009; Valente et al., 2011; Valente &
Vargas, 2013). The majority of Prosthetopinae are found in relatively
open, Fynbos-dominated, fire-prone environments; remnant patches
of Afrotemperate forest by contrast supporting a relatively depauper-
ate fauna, with few microendemics. Indeed, nutrient release from fire
appears to be important in shaping prosthetopine assemblage compo-
sition in stream and rock seepage habitats in the South African Cape
(D. T. Bilton, pers. obs.).

Within the Cape taxa there has been at least one excursion north-
east, leading to the colonization of Madagascar and Réunion by Sicili-
cula. Links between Cape and Malagasy lineages are also seen in
Hyphydrini Sharp (Dytiscidae), where the Madagascan Hovahydrus
Bistrom is sister to a Cape clade of five genera (Ribera & Balke, 2007).
The only member of the Prosthetopinae known from East Africa is
Protosthetops kenyensis (Orchymont) in Kenya. Although not sampled
in our phylogeny, the species’ morphology strongly suggests a posi-
tion nested within this group, implying an origin via northward dis-

persal from the Cape, as seen in Parhydraenini and Coelometopon (see
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above) and a number of plant taxa (Galley & Linder, 2006; Valente
etal.,, 2010).

Most of the hydraenid genera missing from our analyses overlap
biogeographically with included taxa, and are clearly related to sam-
pled genera on the basis of morphology. Amongst excluded genera,
the two most interesting, from a biogeographical point of view, are
Edaphobates and Gingkoscia, both of which are known only from their
type localities in China (Jich & Diaz, 2003, 2004). Assuming these
genera are members of the ‘Gondwana group’, their presence outside
former Gondwanan terranes could be explained by dispersal out of
India, after the subcontinent collided with Eurasia, 55-20 MYA
(Loria & Prendini, 2020). Alternative scenarios would be dispersal to
the southern margin of Laurasia from a separate East Gondwanan ter-
rane such as the West Burma Block in the Paleogene (Poinar, 2019),
or much earlier, perhaps Mid-Cretaceous dispersal from West Gond-
wana via Europe, as has been postulated for Onychophorans (Oliveira
et al., 2016). Clearly, analysis of divergence times for these genera is
essential to test between such hypotheses. China is well-known to
harbour many relictual lineages in both plants and animals
(e.g., Hawlitschek et al.,, 2012; Lépez-Pujol & Ren, 2009a, 2009b),
including a number of other elements which appear to be isolated lin-
eages of Gondwanan ancestry, such as Acanthochlamys bracteata P.C.
Kao (Velloziaceae) (Sun et al., 2017; Wanga et al., 2021).

Habitat evolution in the ‘Gondwana group’

The vast majority of species of the ‘Gondwana group’ are truly
aquatic as adults, with shifts to terrestriality being relatively rare.
Within the Hydraeninae, adults of all described Limnebius are fully
aquatic and most Hydraena are aquatic and lotic in the adult stage. A
limited, but likely under-estimated number of Hydraena species are
terrestrial, living in damp tropical forest litter (e.g., Hernando &
Ribera, 2017; Perkins, 2017). Within the Ochthebiinae, a number of
transitions to terrestriality have occurred in adults, but with the
exception of the Australian/Antarctic Meropathus, the species con-
cerned usually occupy wet margins rather than areas far away from
water. Compared with these two subfamilies, transitions to adult ter-
restriality have been relatively frequent within the ‘Gondwana group’
of genera, clearly occurring four times in the taxa included in our phy-
logeny. Within Protozantaena, whilst most species appear to be lotic,
some unsampled species, including P. malagasica Perkins, have been
recorded from sifted forest litter (Perkins, 2009). Edaphobates may
represent a sixth transition to humicolous terrestrial habitats in the
group (Jach & Diaz, 2003). The other non-stream habitat frequently
colonized by members of the ‘Gondwana group’ are madicolous faces,
where (semi)permanent trickles of water flow over exposed rock
(Vaillant, 1956). Such habitats have been colonized extensively by
these hydraenids, in Africa, Madagascar, India and South America, and
these beetles form a key component of the specialized aquatic fauna
(e.g., Ribera et al, 2002; Ribera & Bilton, 2007; Spangler &
Steiner, 2005) of wet rock faces in these regions. Although a formal

analysis of morphological traits in the ‘Gondwana group’ is beyond
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the scope of the current work, we strongly suspect that some of the
features of the antennal club, antennal pocket, hypomeron and ventral
vestiture used in hydraenid classification by Perkins (1997), reflect
adaptations to aquatic or humicolous and/or madicolous lifestyles. As
such, whilst these characters can identify lineages, they may not
always provide a reliable guide to relationships, illustrated by the dif-
ferences between our phylogeny and existing higher-level
classifications.

In Prosthetops, multiple habitat transitions appear to have hap-
pened within the same lineage. From a madicolous ancestor, a shift to
rock pools was associated with the evolution of a distinct habitus,
with larger body size, relatively large head, long appendages and
stronger sexual dimorphism, corresponding to Prosthetops as previ-
ously defined. Within this rock pool clade, a further shift back to madi-
coly has occurred in Prosthetops chrysomallus (originally described as a
Pterosthetops), whose sister species is Prosthetops wolfbergensis Bilton,
the two being broadly sympatric on the Bokkeveld Plateau at the
northern end of the Fynbos Biome, South Africa.

CONCLUSIONS

Our molecular work covers most hydraenid genera unsampled to date,
and results in a number of taxonomic changes. Our phylogenetic ana-
lyses suggest a different picture of hydraenid inter-relationships than
the currently accepted higher classification in this diverse family of
true water beetles. Future work should aim to confirm the monophyly
of our ‘Gondwana group’ and investigate the phylogenetic placement
of genera we were unable to sample, including Davidraena and Gon-
draena in India, but particularly the Chinese Edaphobates and Ginkgos-
cia, the only non-Gondwanan members of this putative lineage.
Denser taxon sampling in the future would also allow us to test
whether specific habitat preferences are associated with higher or
lower diversification dynamics. This is especially important consider-
ing the existing theoretical framework suggesting that the more
ephemeral habitats are, the less genetically structured their
inhabitants are likely to be (Ribera, 2008). Despite the lack of a formal
macroevolutionary framework in this study, due to incomplete species-
level taxon sampling, it is clear that some clades associated with geolog-
ically stable lotic habitats (e.g., Mesoceration) appear to have diversified
more in the Neogene than others. Such a pattern would repay detailed
scrutiny, with more comprehensively sampled phylogenies.
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