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Abstract

The giant ground beetle genus Calosoma (Coleoptera, Carabidae) comprises ca. 120 species distributed worldwide. About
half of the species in this genus are flightless due to a process of wing reduction likely resulting from the colonization of remote
habitats such as oceanic islands, highlands, and deserts. This clade is emerging as a new model to study the genomic basis of
wing evolution in insects. In this framework, we present the de novo assemblies and annotations of two Calosoma species
genomes from British Columbia, Calosoma tepidum and Calosoma wilkesii. Combining PacBio HiFi and Hi-C sequencing,
we produce high-quality reference genomes for these two species. Our annotation using long-read RNAseq and existing
Coleoptera protein evidence identified a total of 21,976 genes for C. tepidum and 26,814 genes for C. wilkesii. Using synteny
analyses, we provide an in-depth comparison of genomic architectures in these two species. We infer an overall pattern of
chromosome-scale conservation between the two species, with only minor rearrangements within chromosomes. These
new reference genomes represent a major step forward in the study of this group, providing high-quality references that
open the door to different approaches such as comparative genomics or population scale resequencing to study the implica-
tions of flight evolution.

Key words: Adephaga genomes, Carabinae, PacBio HiFl sequencing, South Okanagan Grasslands Protected Area, Hi-C.

Significance

The caterpillar hunter beetle genus Calosoma is emerging as a new model to study the evolution of wing morphology.
Several lineages in this genus are capable of winged flight, a rare condition in the subfamily Carabinae, when the rest is
either brachypterous, i.e. with reduced wings, or apterous, i.e. without wings. Unfortunately, few genomic resources
exist to date that would allow a better understanding of flight evolution in Calosoma. In this study, we present the
chromosomal-scale genomes of two Calosoma species with different wing morphologies that will hopefully be useful
to future investigations into the genomic basis of flight evolution in this group.

Introduction number of available high-quality animal genomes available
Beetles (Insecta, Coleoptera) are the most diverse lineage of to date (McKenna 2018). It is therefore key to develop such
animals on Earth, with >380,000 species described to date genomic resources across the Coleoptera evolutionary tree
and many more to discover and name (Stork 2018). as these are a window into a better understanding of this
Surprisingly, this order also presents one of the lowest astonishing insect radiation.
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The order Coleoptera comprises four suborders, the
Adephaga, Archostemata, Myxophaga, and Polyphaga.
As of September 2024, most chromosome-scale beetle
genomes belong to the suborder Polyphaga (149 out of
165 available, i.e. >90%), while none have been generated
for the species-poor suborders Archostemata and
Myxophaga (Challis et al. 2023; Genomes on a Tree data-
base last accessed 16.09.2024). Few chromosome-scale
genomes of Adephaga have been generated to date with
respect to the remarkable diversity of species and ecologies
in this clade (Beutel et al. 2020; Baca et al. 2021). Ground
beetles in the family Carabidae represent the most species-
rich family of the Adephaga suborder, with ca. 40,000 de-
scribed species (Carabcat database 2021). Despite a wide
interest in their ecology and evolution, phylogenetic rela-
tionships in Carabidae are poorly understood (Maddison
et al. 1999, 2009) and the lack of high-quality genomes
precludes a better understanding of their evolution in
general. In this study, we focus on the subfamily
Carabinae that comprises several genera of large predatory
beetles most often brachypterous and therefore flightless.
This  subfamily harbors very few genomes, the
two available as of July 2024 being that of Calosoma
(Castrida) granatense Géhin, 1885 (Vangestel et al. 2024)
and Carabus (Mesocarabus) problematicus Herbst, 1786
(GCA_963422195.1). Caterpillar hunter beetles of the
genus Calosoma Weber, 1801 have progressively emerged
as an evolutionary model because they showcase several
morphological transitions from fully developed functional
wings to brachyptery and aptery (Su et al. 2005;
Toussaint and Gillett 2018; Sota et al. 2020; Toussaint
etal. 2021; Sota et al. 2022). These unique morphological
transitions are often associated with the colonization of
relatively remote or extreme environments such as oceanic
islands, highlands, and deserts. Based on the evolutionary
trees reconstructed so far for the genus (Toussaint and
Gillett 2018; Sota et al. 2020; Toussaint et al. 2021; Sota
et al. 2022), it appears plausible that complex functional
wings were reevolved from a brachypterous ancestor in
different lineages as observed for instance in stick
insects (Whiting et al. 2003; Bank and Bradler 2022).
Reconstructing the evolutionary sequence of flight loss
and gain in Calosoma is key to understanding the genomic
basis of wing evolution globally. So far, only the wing poly-
morphic species Calosoma granatense from the Galapagos
archipelago has been sequenced (Vangestel et al. 2024).
In this study, we report the sequencing of two species
presenting different stages of flightlessness, Calosoma
(Chrysostigma) tepidum LeConte, 1852 that is macropter-
ous but likely unfit to fly due to thoracic muscle reduction
and Calosoma (Callistenia) wilkesii LeConte, 1852 that is
brachypterous (Bruschi 2013; pers. obs.). These new gen-
omic resources will likely prove key to investigating wing
genomics in the future (Fig. 1e,f).

Results and Discussion

Sequencing and Assembly Statistics

Using PacBio HiFi sequencing, we obtained 447,595 reads
(3.6 Gb) with an average size of 9.0kb and a N50 of
8.1 kb for Calosoma wilkesii;: and 572,182 reads (6.7 Gb)
with an average size of 11.7 kb and a N50 of 13.1 kb for
Calosoma tepidum. Genome-size estimations predicted
using k-mer count were ~242 Mb for Calosoma wilkesii,
with a coverage of 7x and ~207 Mb for Calosoma
tepidum, with a coverage of 13x (supplementary figs. S1
and S3, table S1, Supplementary Material online). The pri-
mary assemblies were composed of 1,077 contigs with a
N50 of 519 kb for Calosoma wilkesii and 1,302 contigs
with a N50 of 2.0 Mb for Calosoma tepidum. Using Hi-C
data, contigs were organized to shape final assemblies.
The genome of Calosoma wilkesii is composed of 450
scaffolds with a total length of 227 Mb, quality statistics
of N50=13.0 Mb, and 97.4% completeness based on
the universal, single-copy ortholog gene set for Insecta
(Fig. 2a). Note that 16 scaffolds are longer than 3 Mb,
and create a gap in the size distribution with smaller scaf-
folds. These 16 scaffolds represent 84.8% of the total gen-
ome length and certainly correspond to the chromosomes
(Fig. 2c). Chromosome formula seems consistent between
Calosoma species (five species studied by Serrano and
Yadav 1984), and is composed of 13 autosomal chromo-
somes and two sexual chromosomes (X and Y) with varia-
tions in Y chromosome size. Among these 16 scaffolds,
only one chromosome appears to have been split in two
scaffolds. For reasons of convenience and in view of the
quality of the Calosoma wilkesii assembly, the scaffolds
from this species will be referred to as pseudo-
chromosomes. The genome of Calosoma tepidum is com-
posed of 1,243 scaffolds with a total length of 273 Mb,
with quality statistics of N50=6.5Mb, and 99.3%
BUSCO completeness (Fig. 2b). The contingency of this as-
sembly is marginally inferior to that of Calosoma wilkesii.
Twenty-nine scaffolds are larger than 1 Mb, and they re-
present 73.2% of the genome (Fig. 2c). This implies that
some chromosomes remain fragmented despite the use
of Hi-C data to reconstruct chromosome architecture. The
quality of the assemblies we obtained is comparable to
the genomes currently available for the Carabidae group,
such as the genome of Calosoma granatense, composed
of 6,044 scaffolds with a total size of 168 Mb, a N50 of
5.6 Mb, and a BUSCO completeness of 98.3%. The use
of this latter genome as a reference for population genomic
studies across the Galdpagos archipelago reveals the
usefulness of such reference genomes (Vangestel et al.
2024). The other available genome is that of Carabus
problematicus, which belongs to the sister genus to
Calosoma. This genome is composed of 222 scaffolds
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Fig. 1. a) Habitat in which both species were found, forested paths close to the Blue Lake in South Okanagan Grasslands Protected Area (credit: Emmanuel
Toussaint), b) pitfall trap baited with red wine vinegar used to collect the two species (credit: Emmanuel Toussaint). ¢) Satellite map of the research area (open
source Copernicus Sentinel-2 data). d) Map of Canada highlighting the location of the research area in British Columbia (open source Wikimedia Commons),
e) photograph of Calosoma (Chrysostigma) tepidum LeConte, 1852, at the Blue Lake locality (credit: Emmanuel Toussaint), f) photograph of Calosoma
(Callistenia) wilkesii LeConte, 1852, at the Blue Lake locality (credit: Emmanuel Toussaint), g) maximum likelihood phylogenomic tree of Carabidae inferred
using a matrix of BUSCO genes extracted from available genomic-scale resources. Branch support metrics across the topology correspond to SH-aLRT and
ultrafast bootstrap (UFBoot) as calculated in IQ-TREE. Newly generated genomes are labeled in red.

Genome Biol. Evol. 17(1) https://doi.org/10.1093/gbe/evae247 Advance Access publication 16 November 2024 3

Gz0z Aienuepr 9o UO Josn aAsuSc) ap a)IsiBAluN A 8691 06//.ZeeAe/eqB/c601 0L /10p/a1o1e/eqb/woo dno olwapede//:sdiy woly papeojumoq



Gauthier et al. GBE

Calosoma wilkesii Calosoma tepidum
Record statistics BUSCO insecta_odb10(1367) Record statistics BUSCO insecta_odb10 (1367)
[ Log10 record count (total 450) B comp. (97.4%)  [] Frag. (0.1%) [0 Log10 record count (total 1.24k) M comp. (99.3%) [ Frag. (0%)
[E Record length (total 227M) I oupl. 0.7%) [ Mmissing (2.5%) [H Record length (total 275M) W Dupl. (1.39%) [ Missing (0.66%)
I Longest record (21.6M) s 7 [l Langest record (13.3M) -

[X N50 tength (6.44M)
[ N90 tength (54.9k) ~

(X Ns0 length (13M)
[T N90 length (320k)

)
o

A U ) g
> Composition Scale < " Composition
[ Gc34.4%) [o]rETm| [ GC (33.5%)
O AT 65.6% OfEzam] [ AT (66.5%)
OIN©1% O N (0.01%)

Scale
O]
Ozen]

(© 2

Calosoma tepidum
=
o
\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516

Calosoma wilkesii

Fig. 2. Snail plot including genome statistics for the final assemblies C. wilkesii a) and C. tepidum b). ) Synteny plot. The positions of BUSCO genes mapping
uniquely to both genomes are shown in the order of the C. wilkesii pseudo-chromosomes. The colors reflect the different C. wilkesii pseudo-chromosomes. A
fully conserved chromosome would be reflected as a single diagonal line. Gray lines indicate scaffold ends.

with a total size of 254 Mb, a N50 of 17.5 Mb, and a Using a selection of universal loci from the genomic data
BUSCO completeness of 99.2%. (BUSCO genes), we inferred a phylogenomic tree including
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all available high-quality long-read genomes of Carabidae
as well as of a single Dytiscidae. This newly generated gen-
omic data refines our understanding of Carabidae phylo-
genetic relationships. Despite a reduced taxon sampling,
the results of our phylogenomic inference highlight some
interesting placements that have remained controversial
until recently (Maddison et al. 1999, 2009; Vasilikopoulos
etal. 2021). Within Carabidae, we recover two main clades,
the first one comprises the subfamilies Harpalinae,
Scaritinae, and Trechinae, while the second one comprises
the subfamilies Carabinae and Nebriinae. This latter rela-
tionship represents an interesting result with robust branch
support that was only recently evidenced by target capture
phylogenomics (Vasilikopoulos et al. 2021). Previous stud-
ies based on Sanger sequencing of few loci had alternative-
ly recovered Carabinae as an early-diverging branch in
Carabidae with no closely related lineages (Maddison
et al. 1999, 2009) or with possible ties with the subfamily
Elaphrinae (Ribera et al. 2005). Additional sampling at a
genomic scale is needed to resolve with more accuracy
the placement of Carabinae within Carabidae. Within
Carabinae, the genus Calosoma is inferred as sister to
Carabus problematicus, thereby forming a monophyletic
tribe Carabini, a result in line with both earlier molecular
studies (Osawa et al. 2004) and recent phylogenomic
ones (Toussaint et al. 2021; Vasilikopoulos et al. 2021;
Sota et al. 2022). Finally, the two Calosoma species se-
guenced in this study are recovered as sister taxa and are
nested in a monophyletic genus Calosoma along with the
species C. granatense. The phylogeny of Calosoma has
recently received increased attention due to the putative
existence of functional wing re-evolution in this group
(Toussaint and Gillett 2018; Toussaint et al. 2021).
Although several subgenera within Calosoma have been in-
ferred to be either para- or polyphyletic, the two species
Calosoma (Chrysostigma) tepidum and C. (Callistenia) wilk-
esii were recovered in Clade Il in Toussaint and Gillett
(2018), while C. (Castrida) granatense was recovered in
the phylogenetically distant Clade CVI. The results of this
study are therefore in line with the ones of previous studies
on this genus as well as with the seminal work of René
Jeannel who already noted the morphological similarity of
the subgenera Calosoma (Chrysostigma) Kirby, 1837,
C. (Callistenia) Lapouge, 1929, and C. (Callisthenes)
Fischer von Waldheim, 1822 (Jeannel 1940), these three
lineages forming a monophyletic group in recent molecular
studies (Toussaint and Gillett 2018; Toussaint et al. 2021).
Future more densely sampled phylogenetic trees of
Calosoma caterpillar hunter beetles will be helpful to better
understand their evolutionary history especially with re-
spect to wing morphology.

Analysis of the synteny between the two species is in-
formative with respect to the genomic architecture
(Fig. 2). Using the pseudo-chromosomes of Calosoma

wilkesii as a reference, we observed that many C. tepidum
scaffolds can be associated with pseudo-chromosomes.
Most of the time, a Calosoma wilkesii pseudo-chromosome
corresponds to two C. tepidum scaffolds, for instance
C. wilkesii pseudo-chromosome 1 corresponds to C. tepidum
scaffold_2 and scaffold_3. In some cases, the assembly is a
direct match, as in the case of pseudo-chromosome 8 and
scaffold_1. Numerous breaks were identified but only in
the pseudo-chromosomes identified and almost never be-
tween pseudo-chromosomes, revealing recombination
events within chromosomes but not between chromo-
somes. This is consistent with the divergence time between
the two species that belong to two different subgenera with-
in the comparatively recent genus Calosoma estimated to be
ca. 25 to 30 million years old (Sota et al. 2022). It should be
noted that scaffold_16 from Calosoma wilkesii, which
appears to be the supernumerary scaffold in terms of the
karyotype, appears to be syntenic with scaffold_16 from
C. tepidum, which itself is largely syntenic with pseudo-
chromosome 14 from C. tepidum. Additional data, not
based on synteny with the risks of recombination, could
allow this scaffold to be reintegrated into the overall
assembly and thus achieve a chromosome-scale assembly
consistent with the karyotype.

Genome Annotation

The structural annotation performed using BRAKER3 and
combining hints from Coleoptera proteins and long-read
RNAseq resulted in the annotation of 26,814 genes with
88.5% BUSCO completeness and 21,976 genes with
91.0% BUSCO completeness for Calosoma wilkesii and
C. tepidum, respectively. These statistics are lower than
those obtained on genomes, but consistent with the
literature although comparison is difficult, as no annotation
exists for the Adephaga genomes available. However,
among the 50 existing annotations of coleopteran gen-
omes, the average number of genes identified is 20,005
genes (sd =7,872) (data extracted from the Arthropoda
Assembly Assessment Catalogue (Feron and Waterhouse
2022)). This makes the annotations proposed in this study
the first annotations available for Carabidae species. The
identification of orthologous families between the two spe-
cies has resulted in the assignment of 40,976 genes (84.1%
of total) to 12,884 orthogroups.

Materials and Methods

Sample Collection

Samples of both Calosoma tepidum and C. wilkesii were
collected in forested paths near the Blue Lake (841 m,
49°02'23.4"N  119°3326.1"W) in South Okanagan
Grasslands protected area, British Columbia, Canada be-
tween the 5™ and 7 of June 2023 under a BC Park Use
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Permit No. 111631 to EFAT and MB (Fig. 1¢). Pitfall traps
baited with red wine vinegar and active hunting at night
with headlamps were used (Fig. 1a and b). The pitfall traps
were nonlethal, using a central emerged piece of wood or
rock to ensure that specimens would not drown overnight.
The traps were checked every day to ensure that non-
targeted species would not be collaterally killed. All live spe-
cimens collected were kept in containers with a humid cot-
ton ball and in a cooler before molecular lab procedures.

DNA Extraction Library Construction and Sequencing

High-molecular weight (HMW) DNA was extracted from the
thorax, which contains the most muscle and therefore po-
tentially the most DNA, avoiding potential contamination
from the gut. Body parts of the beetles were reduced to
powder in liquid nitrogen using Bessman Tissue Pulverizer
and kept at —80 °C. DNA was extracted using the
MagAttract HMW DNA Kit from Qiagen including a protein-
ase K digestion and was eluted in 100 uL Elution Buffer
(Qiagen). DNA was quantified by fluorescence using the
Quant-iT DNA Assay Kit, High Sensitivity from Thermo
Fisher Scientific. Purity was checked on DS-11 spectropho-
tometer from DeNovix. Profile and size were assessed
with the HS DNA kit on Fragment Analyzer (Agilent
Technologies). A quantity of 500 to 1,000 ng gDNA was
fragmented with the Megaruptor 3 from Diagenode to ob-
tain 12 to 15 kb average size DNA fragments. After purifica-
tion of fragmented gDNA, each sample was used to prepare
one SMARTDbell library with the SMRTbell prep kit 3.0 ac-
cording to the whole genome protocol from PacBio. The
polymerase SMRT Library complex was prepared using the
Sequel Il Binding Kit 3.2, and sequencing was performed
on the Sequel lle System on SMRTcell at a loading concen-
tration of 80 pM and with a movie run-time of 30 h. The
BAM files of PacBio (HiFi reads) underwent processing using
SMRT Link (v11.1.0.166339), following the Demultiplex
Barcodes utility, leading to barcode-sorted BAM files.

The Proximo Hi-C library was constructed following the
instructions in the Proximo Hi-C kit manual (Phase
Genomics, Seattle, WA, USA). Sequencing of the Hi-C li-
brary was performed on an lllumina NovaSeq 6000 plat-
form with a 2 x 150 bp paired-end reads.

RNA was extracted from the head which contains the
most specific transcripts to cover as much as possible the
full transcript register. RNA was extracted using RNeasy
Fibrous Tissue Mini Kit from Qiagen including a DNAse treat-
ment, eluted in 50 yL RNase-free water and then submitted
to initial quality control. RNA was quantified by fluorescence
using the Quant-iT RNA Assay Kit, High Sensitivity from
Thermo Fisher Scientific. Purity was checked on DS-11 spec-
trophotometer from DeNovix. Quality was assessed with the
HS RNA kit on Fragment Analyzer (Agilent Technologies).
Before processing, RNA samples were purified using the

RNA Clean and Concentrator-5 kit (R1013) from Zymo
Research. First-strand cDNA synthesis was performed using
the NEBNext Single Cell/low Input cDNA Synthesis &
Amplification kit (New England Biolabs, E6421) from
300 ng of total RNA input according to PacBio's instructions.
Template Switching reaction was achieved using the Iso-Seq
express template switching oligo (TSO) from PacBio. cDNA
was then purified before amplification. A total of 15 PCR cy-
cles of amplification was performed with indexed primers
designed by PacBio for each RNA sample using the
NEBNext Single Cell cDNA PCR Master Mix. After purifica-
tion, amplified indexed ¢cDNA products were pooled to-
gether to prepare one SMRTbell library with the SMRTbell
prep kit 3.0 according to the Iso-Seq protocol from PacBio.
The polymerase SMRT Library complex was prepared using
the Sequel Il Binding Kit 3.1, and sequencing was performed
on the Sequel lle System on one SMRTcell at a loading con-
centration of 80 pM and with a movie run-time of 24 h.

The BAM files of PacBio (HiFi reads) underwent process-
ing using SMRT Link (v11.1.0.166339), following the
Demultiplex Barcodes utility, to obtain barcode-sorted files
where the generic SMRTbell adapter sequences are
trimmed. These were then processed using the IsoSeq
SMRT tools analysis pipeline. The Iso-Seq Analysis involved
primer removal and demultiplexing using “lima” with para-
meters “--isoseq” (to get rid of Iso-Seq primer sequences).
To generate full-length non-chimeric (FLNC) reads, we re-
moved chimeric reads and trimmed poly-A tails using the
“isoseq refine” with parameter “--require-polya”.

Genome Assembly and Evaluation

Initial assembly was performed using Hifiasm (Cheng et al.
2021), and duplications were removed using purge_dups
(Guan et al. 2020). Hi-C data was mapped on the initial
assembly using bwa-mem2 (Vasimuddin et al. 2019) fol-
lowed by cleaning steps to sort and remove PCR duplicates
using samtools 1.19 (Li et al. 2009) and following the
HiC_pipeline  (https:/github.com/esrice/hic-pipeline).  The
assembly was then scaffolded integrating Hi-C data using
YaHS (Zhou et al. 2023) with default parameters. Manual cur-
ation and visualization were performed using PretextView
(https://github.com/sanger-tol/PretextView) (supplementary
fig. S2, Supplementary Material online). The mitochondrial
genomes were assembled using MitoHiFi (Uliano-Silva et al.
2023), integrating MitoFinder (Allio et al. 2020). PacBio reads
were mapped on the final assembly using minimap2 2.22.6
(Li 2021) with map-hifi option, and coverage was calculated
using samtools depth (Li et al. 2009). Putative contaminations
were investigated by cutting the genome in 1 Mb fragments
and blasting against the NR database using diamond 2.19
(Buchfink et al. 2021). Completeness was evaluated using
BUSCO (Seppey et al. 2019), and the insecta_odb10 com-
posed of 1,367 genes. To evaluate contamination, scaffolds
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were cut into 1 Mb fragments and blasted against the
UniProt database (UniProt Consortium 2023) using
Diamond blastx (Buchfink et al. 2021). Putative contamin-
ation scaffolds were excluded by combining the results of
BLAST, GC content, and coverage. All this data has been in-
tegrated into the BlobToolKit environment (Challis et al.
2020) for visualization.

Transcriptomic Data and Gene Structure Prediction

Protein coding genes were predicted using BRAKER3
(Gabriel et al. 2024) following dedicated long read protocol
and integrating evidence from RNAseq data and protein
data. First, long-read RNAseq, i.e. PacBio CSS, were clus-
tered using IsoSeq workflow (PacBio) and mapped on the
genome using minimap2 and splice:hg option (Li 2021).
Gene predictions were generated using GeneMarkS-T
(Tang et al. 2015). Second, reference proteins were ex-
tracted from OrthoDBv11 (Kuznetsov et al. 2023) to keep
Insecta data and used in BRAKER2 pipeline to design hints
combining diamond (Buchfink et al. 2021), spaln2 (lwata
and Gotoh 2012), GeneMark_ES (Lomsadze et al. 2005),
ProtHint (Brdna et al. 2020), and Augustus (Hoff and
Stanke 2019). Finally, the two sets of predictions were com-
bined using TSEBRA (Gabriel et al. 2021). Proteins were ex-
tracted from the annotation, and their completeness was
evaluated using BUSCO under protein mode (Seppey
et al. 2019). The proteins predicted by these annotations
for the two species were compared using OrthoFinder
v2.5.5 (Emms and Kelly 2015) in order to identify the genes
shared and specific to each species.

Phylogenetic Inference and Synteny

BUSCO single-copy orthologs were extracted from 15 close-
ly related species and outgroups, aligned using MAFFT
(Katoh and Standley 2013) and concatenated using AMAS
(Borowiec 2016). The species phylogeny was performed
on this alignment composed of 1,367 orthologs using
IQ-TREE 2.0.5 (Minh et al. 2020) using the edge-linked
partition model (Chernomor et al. 2016). Best
partitioning schemes were estimated using PartitionFinder
2.1.1 (Lanfear et al. 2017), and best-fit models of
nucleotide substitution were identified using ModelFinder
(Kalyaanamoorthy et al. 2017). To estimate branch support,
we calculated 1,000 ultrafast bootstraps along with 1,000
SH-alLRT tests in IQ-TREE (Guindon et al. 2010; Hoang et al.
2018). Synteny between the two genomes was investigated
based on the positions of the BUSCO single-copy orthologs
and using a custom-made R script (Gauthier et al. 2023).

Supplementary Material

Supplementary material is available at Genome Biology and
Evolution online.
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