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Abstract

The giant ground beetle genus Calosoma (Coleoptera, Carabidae) comprises ca. 120 species distributed worldwide. About 
half of the species in this genus are flightless due to a process of wing reduction likely resulting from the colonization of remote 
habitats such as oceanic islands, highlands, and deserts. This clade is emerging as a new model to study the genomic basis of 
wing evolution in insects. In this framework, we present the de novo assemblies and annotations of two Calosoma species 
genomes from British Columbia, Calosoma tepidum and Calosoma wilkesii. Combining PacBio HiFi and Hi-C sequencing, 
we produce high-quality reference genomes for these two species. Our annotation using long-read RNAseq and existing 
Coleoptera protein evidence identified a total of 21,976 genes for C. tepidum and 26,814 genes for C. wilkesii. Using synteny 
analyses, we provide an in-depth comparison of genomic architectures in these two species. We infer an overall pattern of 
chromosome-scale conservation between the two species, with only minor rearrangements within chromosomes. These 
new reference genomes represent a major step forward in the study of this group, providing high-quality references that 
open the door to different approaches such as comparative genomics or population scale resequencing to study the implica
tions of flight evolution.
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Significance
The caterpillar hunter beetle genus Calosoma is emerging as a new model to study the evolution of wing morphology. 
Several lineages in this genus are capable of winged flight, a rare condition in the subfamily Carabinae, when the rest is 
either brachypterous, i.e. with reduced wings, or apterous, i.e. without wings. Unfortunately, few genomic resources 
exist to date that would allow a better understanding of flight evolution in Calosoma. In this study, we present the 
chromosomal-scale genomes of two Calosoma species with different wing morphologies that will hopefully be useful 
to future investigations into the genomic basis of flight evolution in this group.
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Introduction
Beetles (Insecta, Coleoptera) are the most diverse lineage of 
animals on Earth, with >380,000 species described to date 
and many more to discover and name (Stork 2018). 
Surprisingly, this order also presents one of the lowest 

number of available high-quality animal genomes available 
to date (McKenna 2018). It is therefore key to develop such 
genomic resources across the Coleoptera evolutionary tree 
as these are a window into a better understanding of this 
astonishing insect radiation.
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The order Coleoptera comprises four suborders, the 
Adephaga, Archostemata, Myxophaga, and Polyphaga. 
As of September 2024, most chromosome-scale beetle 
genomes belong to the suborder Polyphaga (149 out of 
165 available, i.e. >90%), while none have been generated 
for the species-poor suborders Archostemata and 
Myxophaga (Challis et al. 2023; Genomes on a Tree data
base last accessed 16.09.2024). Few chromosome-scale 
genomes of Adephaga have been generated to date with 
respect to the remarkable diversity of species and ecologies 
in this clade (Beutel et al. 2020; Baca et al. 2021). Ground 
beetles in the family Carabidae represent the most species- 
rich family of the Adephaga suborder, with ca. 40,000 de
scribed species (Carabcat database 2021). Despite a wide 
interest in their ecology and evolution, phylogenetic rela
tionships in Carabidae are poorly understood (Maddison 
et al. 1999, 2009) and the lack of high-quality genomes 
precludes a better understanding of their evolution in 
general. In this study, we focus on the subfamily 
Carabinae that comprises several genera of large predatory 
beetles most often brachypterous and therefore flightless. 
This subfamily harbors very few genomes, the 
two available as of July 2024 being that of Calosoma 
(Castrida) granatense Géhin, 1885 (Vangestel et al. 2024) 
and Carabus (Mesocarabus) problematicus Herbst, 1786 
(GCA_963422195.1). Caterpillar hunter beetles of the 
genus Calosoma Weber, 1801 have progressively emerged 
as an evolutionary model because they showcase several 
morphological transitions from fully developed functional 
wings to brachyptery and aptery (Su et al. 2005; 
Toussaint and Gillett 2018; Sota et al. 2020; Toussaint 
et al. 2021; Sota et al. 2022). These unique morphological 
transitions are often associated with the colonization of 
relatively remote or extreme environments such as oceanic 
islands, highlands, and deserts. Based on the evolutionary 
trees reconstructed so far for the genus (Toussaint and 
Gillett 2018; Sota et al. 2020; Toussaint et al. 2021; Sota 
et al. 2022), it appears plausible that complex functional 
wings were reevolved from a brachypterous ancestor in 
different lineages as observed for instance in stick 
insects (Whiting et al. 2003; Bank and Bradler 2022). 
Reconstructing the evolutionary sequence of flight loss 
and gain in Calosoma is key to understanding the genomic 
basis of wing evolution globally. So far, only the wing poly
morphic species Calosoma granatense from the Galápagos 
archipelago has been sequenced (Vangestel et al. 2024). 
In this study, we report the sequencing of two species 
presenting different stages of flightlessness, Calosoma 
(Chrysostigma) tepidum LeConte, 1852 that is macropter
ous but likely unfit to fly due to thoracic muscle reduction 
and Calosoma (Callistenia) wilkesii LeConte, 1852 that is 
brachypterous (Bruschi 2013; pers. obs.). These new gen
omic resources will likely prove key to investigating wing 
genomics in the future (Fig. 1e,f).

Results and Discussion

Sequencing and Assembly Statistics

Using PacBio HiFi sequencing, we obtained 447,595 reads 
(3.6 Gb) with an average size of 9.0 kb and a N50 of 
8.1 kb for Calosoma wilkesii; and 572,182 reads (6.7 Gb) 
with an average size of 11.7 kb and a N50 of 13.1 kb for 
Calosoma tepidum. Genome-size estimations predicted 
using k-mer count were ∼242 Mb for Calosoma wilkesii, 
with a coverage of 7× and ∼207 Mb for Calosoma 
tepidum, with a coverage of 13× (supplementary figs. S1 
and S3, table S1, Supplementary Material online). The pri
mary assemblies were composed of 1,077 contigs with a 
N50 of 519 kb for Calosoma wilkesii and 1,302 contigs 
with a N50 of 2.0 Mb for Calosoma tepidum. Using Hi-C 
data, contigs were organized to shape final assemblies. 
The genome of Calosoma wilkesii is composed of 450 
scaffolds with a total length of 227 Mb, quality statistics 
of N50 = 13.0 Mb, and 97.4% completeness based on 
the universal, single-copy ortholog gene set for Insecta 
(Fig. 2a). Note that 16 scaffolds are longer than 3 Mb, 
and create a gap in the size distribution with smaller scaf
folds. These 16 scaffolds represent 84.8% of the total gen
ome length and certainly correspond to the chromosomes 
(Fig. 2c). Chromosome formula seems consistent between 
Calosoma species (five species studied by Serrano and 
Yadav 1984), and is composed of 13 autosomal chromo
somes and two sexual chromosomes (X and Y) with varia
tions in Y chromosome size. Among these 16 scaffolds, 
only one chromosome appears to have been split in two 
scaffolds. For reasons of convenience and in view of the 
quality of the Calosoma wilkesii assembly, the scaffolds 
from this species will be referred to as pseudo- 
chromosomes. The genome of Calosoma tepidum is com
posed of 1,243 scaffolds with a total length of 273 Mb, 
with quality statistics of N50 = 6.5 Mb, and 99.3% 
BUSCO completeness (Fig. 2b). The contingency of this as
sembly is marginally inferior to that of Calosoma wilkesii. 
Twenty-nine scaffolds are larger than 1 Mb, and they re
present 73.2% of the genome (Fig. 2c). This implies that 
some chromosomes remain fragmented despite the use 
of Hi-C data to reconstruct chromosome architecture. The 
quality of the assemblies we obtained is comparable to 
the genomes currently available for the Carabidae group, 
such as the genome of Calosoma granatense, composed 
of 6,044 scaffolds with a total size of 168 Mb, a N50 of 
5.6 Mb, and a BUSCO completeness of 98.3%. The use 
of this latter genome as a reference for population genomic 
studies across the Galápagos archipelago reveals the 
usefulness of such reference genomes (Vangestel et al. 
2024). The other available genome is that of Carabus 
problematicus, which belongs to the sister genus to 
Calosoma. This genome is composed of 222 scaffolds 
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Fig. 1. a) Habitat in which both species were found, forested paths close to the Blue Lake in South Okanagan Grasslands Protected Area (credit: Emmanuel 
Toussaint), b) pitfall trap baited with red wine vinegar used to collect the two species (credit: Emmanuel Toussaint). c) Satellite map of the research area (open 
source Copernicus Sentinel-2 data). d) Map of Canada highlighting the location of the research area in British Columbia (open source Wikimedia Commons), 
e) photograph of Calosoma (Chrysostigma) tepidum LeConte, 1852, at the Blue Lake locality (credit: Emmanuel Toussaint), f) photograph of Calosoma 
(Callistenia) wilkesii LeConte, 1852, at the Blue Lake locality (credit: Emmanuel Toussaint), g) maximum likelihood phylogenomic tree of Carabidae inferred 
using a matrix of BUSCO genes extracted from available genomic-scale resources. Branch support metrics across the topology correspond to SH-aLRT and 
ultrafast bootstrap (UFBoot) as calculated in IQ-TREE. Newly generated genomes are labeled in red.
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with a total size of 254 Mb, a N50 of 17.5 Mb, and a 
BUSCO completeness of 99.2%.

Using a selection of universal loci from the genomic data 
(BUSCO genes), we inferred a phylogenomic tree including 

(a)

(c)

(b)

Fig. 2. Snail plot including genome statistics for the final assemblies C. wilkesii a) and C. tepidum b). c) Synteny plot. The positions of BUSCO genes mapping 
uniquely to both genomes are shown in the order of the C. wilkesii pseudo-chromosomes. The colors reflect the different C. wilkesii pseudo-chromosomes. A 
fully conserved chromosome would be reflected as a single diagonal line. Gray lines indicate scaffold ends.
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all available high-quality long-read genomes of Carabidae 
as well as of a single Dytiscidae. This newly generated gen
omic data refines our understanding of Carabidae phylo
genetic relationships. Despite a reduced taxon sampling, 
the results of our phylogenomic inference highlight some 
interesting placements that have remained controversial 
until recently (Maddison et al. 1999, 2009; Vasilikopoulos 
et al. 2021). Within Carabidae, we recover two main clades, 
the first one comprises the subfamilies Harpalinae, 
Scaritinae, and Trechinae, while the second one comprises 
the subfamilies Carabinae and Nebriinae. This latter rela
tionship represents an interesting result with robust branch 
support that was only recently evidenced by target capture 
phylogenomics (Vasilikopoulos et al. 2021). Previous stud
ies based on Sanger sequencing of few loci had alternative
ly recovered Carabinae as an early-diverging branch in 
Carabidae with no closely related lineages (Maddison 
et al. 1999, 2009) or with possible ties with the subfamily 
Elaphrinae (Ribera et al. 2005). Additional sampling at a 
genomic scale is needed to resolve with more accuracy 
the placement of Carabinae within Carabidae. Within 
Carabinae, the genus Calosoma is inferred as sister to 
Carabus problematicus, thereby forming a monophyletic 
tribe Carabini, a result in line with both earlier molecular 
studies (Osawa et al. 2004) and recent phylogenomic 
ones (Toussaint et al. 2021; Vasilikopoulos et al. 2021; 
Sota et al. 2022). Finally, the two Calosoma species se
quenced in this study are recovered as sister taxa and are 
nested in a monophyletic genus Calosoma along with the 
species C. granatense. The phylogeny of Calosoma has 
recently received increased attention due to the putative 
existence of functional wing re-evolution in this group 
(Toussaint and Gillett 2018; Toussaint et al. 2021). 
Although several subgenera within Calosoma have been in
ferred to be either para- or polyphyletic, the two species 
Calosoma (Chrysostigma) tepidum and C. (Callistenia) wilk
esii were recovered in Clade II in Toussaint and Gillett 
(2018), while C. (Castrida) granatense was recovered in 
the phylogenetically distant Clade CVI. The results of this 
study are therefore in line with the ones of previous studies 
on this genus as well as with the seminal work of René 
Jeannel who already noted the morphological similarity of 
the subgenera Calosoma (Chrysostigma) Kirby, 1837, 
C. (Callistenia) Lapouge, 1929, and C. (Callisthenes) 
Fischer von Waldheim, 1822 (Jeannel 1940), these three 
lineages forming a monophyletic group in recent molecular 
studies (Toussaint and Gillett 2018; Toussaint et al. 2021). 
Future more densely sampled phylogenetic trees of 
Calosoma caterpillar hunter beetles will be helpful to better 
understand their evolutionary history especially with re
spect to wing morphology.

Analysis of the synteny between the two species is in
formative with respect to the genomic architecture 
(Fig. 2). Using the pseudo-chromosomes of Calosoma 

wilkesii as a reference, we observed that many C. tepidum 
scaffolds can be associated with pseudo-chromosomes. 
Most of the time, a Calosoma wilkesii pseudo-chromosome 
corresponds to two C. tepidum scaffolds, for instance 
C. wilkesii pseudo-chromosome 1 corresponds to C. tepidum 
scaffold_2 and scaffold_3. In some cases, the assembly is a 
direct match, as in the case of pseudo-chromosome 8 and 
scaffold_1. Numerous breaks were identified but only in 
the pseudo-chromosomes identified and almost never be
tween pseudo-chromosomes, revealing recombination 
events within chromosomes but not between chromo
somes. This is consistent with the divergence time between 
the two species that belong to two different subgenera with
in the comparatively recent genus Calosoma estimated to be 
ca. 25 to 30 million years old (Sota et al. 2022). It should be 
noted that scaffold_16 from Calosoma wilkesii, which 
appears to be the supernumerary scaffold in terms of the 
karyotype, appears to be syntenic with scaffold_16 from 
C. tepidum, which itself is largely syntenic with pseudo- 
chromosome 14 from C. tepidum. Additional data, not 
based on synteny with the risks of recombination, could 
allow this scaffold to be reintegrated into the overall 
assembly and thus achieve a chromosome-scale assembly 
consistent with the karyotype.

Genome Annotation

The structural annotation performed using BRAKER3 and 
combining hints from Coleoptera proteins and long-read 
RNAseq resulted in the annotation of 26,814 genes with 
88.5% BUSCO completeness and 21,976 genes with 
91.0% BUSCO completeness for Calosoma wilkesii and 
C. tepidum, respectively. These statistics are lower than 
those obtained on genomes, but consistent with the 
literature although comparison is difficult, as no annotation 
exists for the Adephaga genomes available. However, 
among the 50 existing annotations of coleopteran gen
omes, the average number of genes identified is 20,005 
genes (sd = 7,872) (data extracted from the Arthropoda 
Assembly Assessment Catalogue (Feron and Waterhouse 
2022)). This makes the annotations proposed in this study 
the first annotations available for Carabidae species. The 
identification of orthologous families between the two spe
cies has resulted in the assignment of 40,976 genes (84.1% 
of total) to 12,884 orthogroups.

Materials and Methods

Sample Collection

Samples of both Calosoma tepidum and C. wilkesii were 
collected in forested paths near the Blue Lake (841 m, 
49°02′23.4″N 119°33′26.1″W) in South Okanagan 
Grasslands protected area, British Columbia, Canada be
tween the 5th and 7th of June 2023 under a BC Park Use 
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Permit No. 111631 to EFAT and MB (Fig. 1c). Pitfall traps 
baited with red wine vinegar and active hunting at night 
with headlamps were used (Fig. 1a and b). The pitfall traps 
were nonlethal, using a central emerged piece of wood or 
rock to ensure that specimens would not drown overnight. 
The traps were checked every day to ensure that non- 
targeted species would not be collaterally killed. All live spe
cimens collected were kept in containers with a humid cot
ton ball and in a cooler before molecular lab procedures.

DNA Extraction Library Construction and Sequencing

High-molecular weight (HMW) DNA was extracted from the 
thorax, which contains the most muscle and therefore po
tentially the most DNA, avoiding potential contamination 
from the gut. Body parts of the beetles were reduced to 
powder in liquid nitrogen using Bessman Tissue Pulverizer 
and kept at −80 °C. DNA was extracted using the 
MagAttract HMW DNA Kit from Qiagen including a protein
ase K digestion and was eluted in 100 μL Elution Buffer 
(Qiagen). DNA was quantified by fluorescence using the 
Quant-iT DNA Assay Kit, High Sensitivity from Thermo 
Fisher Scientific. Purity was checked on DS-11 spectropho
tometer from DeNovix. Profile and size were assessed 
with the HS DNA kit on Fragment Analyzer (Agilent 
Technologies). A quantity of 500 to 1,000 ng gDNA was 
fragmented with the Megaruptor 3 from Diagenode to ob
tain 12 to 15 kb average size DNA fragments. After purifica
tion of fragmented gDNA, each sample was used to prepare 
one SMARTbell library with the SMRTbell prep kit 3.0 ac
cording to the whole genome protocol from PacBio. The 
polymerase SMRT Library complex was prepared using the 
Sequel II Binding Kit 3.2, and sequencing was performed 
on the Sequel IIe System on SMRTcell at a loading concen
tration of 80 pM and with a movie run-time of 30 h. The 
BAM files of PacBio (HiFi reads) underwent processing using 
SMRT Link (v11.1.0.166339), following the Demultiplex 
Barcodes utility, leading to barcode-sorted BAM files.

The Proximo Hi-C library was constructed following the 
instructions in the Proximo Hi-C kit manual (Phase 
Genomics, Seattle, WA, USA). Sequencing of the Hi-C li
brary was performed on an Illumina NovaSeq 6000 plat
form with a 2 × 150 bp paired-end reads.

RNA was extracted from the head which contains the 
most specific transcripts to cover as much as possible the 
full transcript register. RNA was extracted using RNeasy 
Fibrous Tissue Mini Kit from Qiagen including a DNAse treat
ment, eluted in 50 µL RNase-free water and then submitted 
to initial quality control. RNA was quantified by fluorescence 
using the Quant-iT RNA Assay Kit, High Sensitivity from 
Thermo Fisher Scientific. Purity was checked on DS-11 spec
trophotometer from DeNovix. Quality was assessed with the 
HS RNA kit on Fragment Analyzer (Agilent Technologies). 
Before processing, RNA samples were purified using the 

RNA Clean and Concentrator-5 kit (R1013) from Zymo 
Research. First-strand cDNA synthesis was performed using 
the NEBNext Single Cell/Low Input cDNA Synthesis & 
Amplification kit (New England Biolabs, E6421) from 
300 ng of total RNA input according to PacBio’s instructions. 
Template Switching reaction was achieved using the Iso-Seq 
express template switching oligo (TSO) from PacBio. cDNA 
was then purified before amplification. A total of 15 PCR cy
cles of amplification was performed with indexed primers 
designed by PacBio for each RNA sample using the 
NEBNext Single Cell cDNA PCR Master Mix. After purifica
tion, amplified indexed cDNA products were pooled to
gether to prepare one SMRTbell library with the SMRTbell 
prep kit 3.0 according to the Iso-Seq protocol from PacBio. 
The polymerase SMRT Library complex was prepared using 
the Sequel II Binding Kit 3.1, and sequencing was performed 
on the Sequel IIe System on one SMRTcell at a loading con
centration of 80 pM and with a movie run-time of 24 h.

The BAM files of PacBio (HiFi reads) underwent process
ing using SMRT Link (v11.1.0.166339), following the 
Demultiplex Barcodes utility, to obtain barcode-sorted files 
where the generic SMRTbell adapter sequences are 
trimmed. These were then processed using the IsoSeq 
SMRT tools analysis pipeline. The Iso-Seq Analysis involved 
primer removal and demultiplexing using “lima” with para
meters “--isoseq” (to get rid of Iso-Seq primer sequences). 
To generate full-length non-chimeric (FLNC) reads, we re
moved chimeric reads and trimmed poly-A tails using the 
“isoseq refine” with parameter “--require-polya”.

Genome Assembly and Evaluation

Initial assembly was performed using Hifiasm (Cheng et al. 
2021), and duplications were removed using purge_dups 
(Guan et al. 2020). Hi-C data was mapped on the initial 
assembly using bwa-mem2 (Vasimuddin et al. 2019) fol
lowed by cleaning steps to sort and remove PCR duplicates 
using samtools 1.19 (Li et al. 2009) and following the 
HiC_pipeline (https://github.com/esrice/hic-pipeline). The 
assembly was then scaffolded integrating Hi-C data using 
YaHS (Zhou et al. 2023) with default parameters. Manual cur
ation and visualization were performed using PretextView 
(https://github.com/sanger-tol/PretextView) (supplementary 
fig. S2, Supplementary Material online). The mitochondrial 
genomes were assembled using MitoHiFi (Uliano-Silva et al. 
2023), integrating MitoFinder (Allio et al. 2020). PacBio reads 
were mapped on the final assembly using minimap2 2.22.6 
(Li 2021) with map-hifi option, and coverage was calculated 
using samtools depth (Li et al. 2009). Putative contaminations 
were investigated by cutting the genome in 1 Mb fragments 
and blasting against the NR database using diamond 2.19 
(Buchfink et al. 2021). Completeness was evaluated using 
BUSCO (Seppey et al. 2019), and the insecta_odb10 com
posed of 1,367 genes. To evaluate contamination, scaffolds 
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were cut into 1 Mb fragments and blasted against the 
UniProt database (UniProt Consortium 2023) using 
Diamond blastx (Buchfink et al. 2021). Putative contamin
ation scaffolds were excluded by combining the results of 
BLAST, GC content, and coverage. All this data has been in
tegrated into the BlobToolKit environment (Challis et al. 
2020) for visualization.

Transcriptomic Data and Gene Structure Prediction

Protein coding genes were predicted using BRAKER3 
(Gabriel et al. 2024) following dedicated long read protocol 
and integrating evidence from RNAseq data and protein 
data. First, long-read RNAseq, i.e. PacBio CSS, were clus
tered using IsoSeq workflow (PacBio) and mapped on the 
genome using minimap2 and splice:hq option (Li 2021). 
Gene predictions were generated using GeneMarkS-T 
(Tang et al. 2015). Second, reference proteins were ex
tracted from OrthoDBv11 (Kuznetsov et al. 2023) to keep 
Insecta data and used in BRAKER2 pipeline to design hints 
combining diamond (Buchfink et al. 2021), spaln2 (Iwata 
and Gotoh 2012), GeneMark_ES (Lomsadze et al. 2005), 
ProtHint (Brůna et al. 2020), and Augustus (Hoff and 
Stanke 2019). Finally, the two sets of predictions were com
bined using TSEBRA (Gabriel et al. 2021). Proteins were ex
tracted from the annotation, and their completeness was 
evaluated using BUSCO under protein mode (Seppey 
et al. 2019). The proteins predicted by these annotations 
for the two species were compared using OrthoFinder 
v2.5.5 (Emms and Kelly 2015) in order to identify the genes 
shared and specific to each species.

Phylogenetic Inference and Synteny

BUSCO single-copy orthologs were extracted from 15 close
ly related species and outgroups, aligned using MAFFT 
(Katoh and Standley 2013) and concatenated using AMAS 
(Borowiec 2016). The species phylogeny was performed 
on this alignment composed of 1,367 orthologs using 
IQ-TREE 2.0.5 (Minh et al. 2020) using the edge-linked 
partition model (Chernomor et al. 2016). Best 
partitioning schemes were estimated using PartitionFinder 
2.1.1 (Lanfear et al. 2017), and best-fit models of 
nucleotide substitution were identified using ModelFinder 
(Kalyaanamoorthy et al. 2017). To estimate branch support, 
we calculated 1,000 ultrafast bootstraps along with 1,000 
SH-aLRT tests in IQ-TREE (Guindon et al. 2010; Hoang et al. 
2018). Synteny between the two genomes was investigated 
based on the positions of the BUSCO single-copy orthologs 
and using a custom-made R script (Gauthier et al. 2023).

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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