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The rapid advancement of genomic technologies has enabled the production of highly contiguous reference genomes for nonmodel
organisms. However, these methods often require exceptionally fresh material containing unfragmented high-molecular-weight nucleic
acids. Researchers who preserve field-collected specimens in ethanol at ambient temperatures, prior to transferring them to long-term
frozen archives, face challenges in applying advanced genomic approaches due to DNA and RNA fragmentation under suboptimal pres-
ervation conditions. To explore the potential of such preserved specimens as sources of reference genomes, we utilized Nanopore
MinlON technology to generate genomic data from a frozen archived specimen of the endemic alpine ground beetle Carabus
(Platycarabus) depressus. Using a rapid in-house protocol for high-molecular-weight DNA extraction, followed by sequencing on a single
flow cell, we produced 8.75 million raw reads with an N50 of 2.8 kb. The resulting assembly achieved remarkable completeness, reco-
vering up to 98% of Benchmarking Universal Single-Copy Orthologs genes, despite a moderate N50 of 945 kb. This genome is only the
second available for the taxonomically diverse genus Carabus, demonstrating the feasibility of using short-to-long-read sequencing on
frozen archived specimens commonly housed in natural history collections. These findings open new avenues for advancing nonmodel
organism genomics and its downstream applications.

Keywords: degraded DNA,; long-read genome sequencing; reference genomes; Nanopore MinlON technology; genome assembly

Introduction

Over the past decade, whole-genome sequencing has advanced sig-
nificantly, particularly in the development of “reference” genomes
that are used as benchmarks for genomic analysis (Formenti et al.
2022). These reference genomes have been crucial in advancing
our understanding of evolutionary relationships, biodiversity
(e.g. Theissinger et al. 2023; Zhang et al. 2024), and the conservation
of threatened species (e.g. Brandies et al. 2019). However, the priori-
tization of species to be sequenced is often guided by criteria that do
not necessarily reflect the species richness of taxonomic groups. For
example, despite being the second most species-rich lineage within
the order Coleoptera, the beetle suborder Adephaga—comprising
over 45,000 described species—hasrelatively few available reference
genomes (Beutel et al. 2020). Within this suborder, the Carabidae
is one of the largest families, comprising ca. 40,000 described species
(“Carabcat database” 2021). However, only 20 reference genomes are
available for this highly diversified clade (Feron and Waterhouse
2022, last accessed 2024 October 1).

The recent increase in the number of available reference gen-
omes and the continuing improvement in their quality are pri-
marily due to the transition from short-read to long-read
sequencing technologies (van Dijk et al. 2023). These latter tech-
nologies, such as Pacific Biosciences single-molecule real-time

sequencing (hereafter abbreviated as PacBio) (Rhoads and Au
2015) and Oxford Nanopore sequencing (Lu et al. 2016), enable
the acquisition of long sequences, significantly simplifying
genome assembly and enhancing the accuracy and quality of
reference genomes (van Dijk et al. 2023). However, the ability to se-
quence long fragments is constrained by the quality of the initial
source material, especially the length of DNA fragments obtained
during extraction. Moreover, certain methods require a significant
size selection step during library preparation (e.g. PacBio). Further
compounding this, the complex logistics involved in effectively
preserving specimen samples in the field make it challenging to
obtain samples of adequate quality, which often restricts the
use of long-read technologies to a limited number of organisms.
An underexplored avenue is the exploitation of preexisting frozen
archived specimens, originally collected and preserved in ethanol
without the expectation of serving as source material for
long-read sequencing. Such specimens are typically stored in mu-
seums and laboratories in commercial freezers at —20°C for
extended periods, ranging from months to years. Freezing slows
down the degradation of DNA, allowing the preservation of
moderately sized DNA fragments over time. Consequently, such
specimens constitute a valuable yet underutilized resource for
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generating medium- to long-read genomic data, which is essential
for assembling new high-quality reference genomes.

To assess the potential of archived specimens for generating
high-quality genomes, we leveraged the flexibility of the Oxford
Nanopore MinION third-generation polynucleotide sequencer
capable of sequencing both short and long DNA fragments. We
employed this technology to sequence a frozen archived specimen
of the giant ground beetle species Carabus (Platycarabus) depressus
(Bonelli, 1810). This predatory species is endemic to the Alps,
where it is widely distributed across most of its arc, from the
Ligurian and Maritime Alps in the West, to the Julian Alps in the
East. It is present in France, Italy, Switzerland, and Austria (Pauli
et al. 2024), inhabiting an elevational range between ~1,000 and
2,500 m that encompasses its typical habitat of high alpine mea-
dows in addition to lower elevation woodlands, where it can be a
dominant species (Turin et al. 2003) (Fig. 1, a and b).

Our objective was to test the potential of such intermediate-
quality samples, commonly represented today in natural history
collections, to generate useful genome-scale data. Specifically,
we aimed to extract high-molecular-weight DNA from a single
specimen of C. depressus that had been preserved at —20°C in
96% ethanol for an extended period of time (more than 4 years).
Using an in-house protocol, we sought to assemble a draft genome
from this archived material.

Material and methods

High-molecular-weight DNA extraction
and Nanopore sequencing

A single male specimen of C. depressus was collected under a large
stone in an alpine meadow at the Colle del Gran San Bernardo,
Piemonte, Italy, in July 2019 (Fig. 1, a and b). The specimen was
fixed in a 30-mL Starstedt (NUmbrecht, Germany) tube containing
96% EtOH before being transported at ambient temperature to the
lab, where it was stored at —20°C until a high-molecular-weight
DNA extraction was performed in February 2024. To obtain source
tissue, we removed thoracic and abdominal tissue (avoiding the
fore and hind gut) and a posterior leg from the specimen (repre-
senting an approximate volume of 0.01 cm?), while it was sub-
merged in 96% EtOH. Following extraction, the specimen was
mounted and is deposited in the Natural History Museum of
Geneva collection with voucher code CBX1139. We relied on anin-
house protocol largely inspired from the one recently described in
the study by Lafon et al. (2024). The dissected tissue was first dried
and then suspended in 500 pL of Qiagen Blood and Tissue Kit Lysis
buffer (Qiagen, Hilden, Germany). After using a pestle and mortar
to homogenize the tissue, we added proteinase K at 10% of the vol-
ume of the lysis buffer and RNase A at 2% of this volume (Fig. 1c).
The finallysis solution was incubated in an Eppendorf thermomix-
er at 56°C with 300 rpm agitation for 1 h. Postincubation, the lysis
solution was centrifuged at 11,000 g at room temperature for
10 min, after which we added 3 M sodium acetate at 10% of the vol-
ume of the eluted supernatant. After gently mixing the solution,
we precipitated the DNA using 96% EtOH at twice the volume of
the lysis solution (Fig. 1c). The eluted DNA was then washed with
70% EtOH twice and incubated at 37°C for 1 h. The DNA quantifica-
tion was performed using a Qubit Broad Range kit (Thermo Fisher
Scientific) and High Sensitivity Large Fragment 50 kb (DNF-464-33)
on an Agilent 5200 Fragment Analyzer (Agilent, Santa Clara, CA,
USA). Finally, the DNA template was cleaned using 1x Ampure
magnetic beads (SPRI technology) and requantified. The final li-
brary was prepared using the Oxford Nanopore Ligation
Sequencing Kit V14 (SQK-LSK114, Oxford Nanopore) following

the manufacturer’s protocol for sequencing large genomic frag-
ments. Sequencing was performed on a MInION Mk1C and
R10.4.1 Flow Cell (FLO-MIN114, Oxford Nanopore) for 45 h with a
minimum read length of 200 bp, and base calling was performed
with the fast model on the Mk1C device.

Genome assembly and evaluation

Base calling was performed on raw sequencing data using
Dorado v0.3.1 (https:/github.com/nanoporetech/dorado) with
the “dna_r10.4.1_e8.2_400bps_sup@v4.2.0” configuration corre-
sponding to the flow cell used for the sequencing. Base calling
was performed on the Baobab HPC service of the University of
Geneva using GPUs. Raw bam files were converted to fastq using
samtools sort v1.4 (Li et al. 2009) and then bedtools bamtofastq
(Quinlan and Hall 2010). We used seqgkit rmdup -n -D (Shen et al.
2016) to remove duplicate sequences by name before assembly.
The processed reads were then assembled using flye2 v2.9.3
(Kolmogorov et al. 2019) with the default settings for corrected
Nanopore reads. The evaluation of the genome was performed fol-
lowing BlobTools2 guidelines v2 (Laetsch and Blaxter 2017; Challis
et al. 2020). To identify putative contamination, we performed
BLAST using blastn v2.12 (Camacho et al. 2009) with the NCBI nu-
cleotide database and diamond v2.1.8 (Buchfink et al. 2015) with
the Universal Protein resource (UniProt, 2024 _2 release) (UniProt
Consortium 2023). Exclusion criteria were based on the blast
and diamond results in blobtools using the best sum order of
the phylum for any nonarthropod or “no-hit” matches. Fastq reads
were mapped against the contigs using minimap? (Li 2018, 2021)
with the map-ont option. Coverage was calculated using bedtools
(Quinlan and Hall 2010). Benchmarking Universal Single-Copy
Orthologs (BUSCO) genes were identified using the insecta_odb10
(Seppey et al. 2019). The final contig assembly was filtered with a
minimum contig length of 1kb, 30% GC content, and a minimum
coverage of 20x. Finally, mtDNA contigs were identified using
blastn with the maximum target sequences set to 20, a maximum
of 1 query—-subject pair, and E-values exceeding 1e—25.

Genome annotation

Protein-coding genes were predicted using BRAKER3 (Gabriel et al.
2024) following a dedicated long-read protocol and integrating evi-
dence from RNA-seq and protein data. First, RNA-seq data ob-
tained from different life stages of C. (Ohomopterus) uenoi
(Ishikawa, 1960),1.e. 3rd instar larvae, male pupae, and female pu-
pae, sequenced using a 454 GS FLX Titanium by Fujimaki et al.
(2014), were assembled using SPAdes v3.13 (Bankevich et al. 2012)
and -ma mode. The resulting transcripts were mapped onto the
genome using minimap? and splice:hqg option (Li 2018, 2021).
Gene predictions were generated using GeneMarkS-T (Tang et al.
2015). Second, reference proteins were extracted from OrthoDB
v11 (Kuznetsov et al. 2023) to retain Insecta data, which were sub-
sequently used in the BRAKER?2 pipeline to design hints combining
diamond (Buchfink et al. 2021), spaln2 (Iwata and Gotoh 2012),
GeneMark_ES (Lomsadze et al. 2005), Prothint (Bruna et al. 2020),
and Augustus (Hoff and Stanke 2019). Finally, the 2 sets of predic-
tions were combined using TSEBRA (Gabriel et al. 2021). Proteins
were extracted from the annotation, and their completeness was
evaluated using BUSCO under protein mode (Seppey et al. 2019).

Phylogenetic inferences

BUSCO genes identified in all published genomes, along with those
recovered for C. depressus, were used to reconstruct the phylogenetic
relationships. This analysis incorporated the newly sequenced spe-
cies and existing Carabidae genomes obtained from the Arthropoda
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Fig. 1. a) In situ photograph of C. (P.) depressus (credit: Conrad Gillett). b) In situ photograph of the habitat (credit: Emmanuel Toussaint). c) Simplified
schematic representation of the DNA extraction process. d) Fragment size distribution plot obtained from a Fragment Analyzer.

Assembly Assessment Catalogue (Feron and Waterhouse 2022). The
resulting genes were aligned with MAFFT v7.505 (Katoh and
Standley 2013) with —auto option and trimmed using trimAl v1.4
(Capella-Gutiérrez et al. 2009). Matrices were generated using
AMAS (Borowiec 2016). A concatenated maximum likelihood (ML)
tree was constructed using IQTREE2 (Minh et al. 2020) with auto-
mated model selection in ModelFinder (Kalyaanamoorthy et al.
2017), chosen according to BIC. We selected Liopterus haemorrhoidalis
(Fabricius, 1787) (Dytiscidae) as an outgroup for ML analysis. Branch
support was assessed using 1,000 replicates of Shimodaira—
Hasegawa approximate likelihood ratio test (SH-aLRT) and 1,000 re-
plicates of ultrafast bootstrap (UFBoot).

Results and discussion

DNA extraction, sequencing, and assembly
statistics

The newly developed room temperature extraction protocol used
in this study yielded sufficient, relatively high-molecular-weight

DNA to allow for successful subsequent long-read sequencing.
This protocol requires less extensive laboratory infrastructure
and logistics compared with other methods for extracting
high-molecular-weight DNA, which, for example, often require
the use of liquid nitrogen (Brown and Coleman 2019). By directly
precipitating DNA using ethanol, our extraction protocol offers a
more cost-effective and rapid alternative to commercial kits
(also see Lafon et al. 2024). The extraction resulted in 1.085 pg of
DNA and eluted in 100 pL, with a Qubit concentration of 11.8 ng/
pL. Despite having been stored under suboptimal conditions for
over 4 years, the DNA fragment size distribution of the specimen
showed a normal distribution with a mean fragment length of
24.3 kb (Fig. 1d). To maximize the DNA yield for sequencing, in-
cluding both short and long fragments, purification was per-
formed using beads (1x) without size selection. This yielded a
total of 543.6 ng (40.3 fmol) of genomic DNA with a Qubit concen-
tration of 6.04 ng/uL, available for library preparation.

Although less than half the recommended input of
high-molecular-weight gDNA was used for library preparation, a
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Fig. 2. a) Snail plot of C. (P.) depressus genome showing the contig size distribution. Descriptive statistics including total length, N50, and N90 length are

indicated in the up-left corner. BUSCO scores are in the up-right corner, and GC content is in the down-left corner. b) Phylogenetic placement of C. (P.)
depressus genome using BUSCO genes. Branch support is indicated using SH-aLRT and UFBoot.

total of 8.75 million reads were generated with the Oxford After base calling with dorado, 6.4 million reads with an N50 of
Nanopore Mk1c device, achieving an N50 of 2.8 kb. This reduced 3.0kbwere obtained and assembled into a draft genome composed
amount of DNA may explain the premature end of the sequencing of 3,665 contigs with a total length of 199 Mb, an N50 of 773 kb, and
process and a lower yield than that announced by the provider. a mean coverage of 41x (Supplementary Table 1). Curation of the

GzZ0z AelN g1 uo 1senb Aq 91 1.8£08/2204eM(/S/G L/a1one/jeulnolgb/woo dno-olwepeoe//:sdiy wols papeojumoq


http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf027#supplementary-data

Draft genome of the endemic alpine ground beetle | 5

genome, based on coverage, GC content, and BLAST results, re-
sulted in 1,569 contigs with a total length of 190 Mb, coverage of
43x, and an N50 of 945 kb (Fig. 2a; Supplementary Fig. 1). In total,
7.98 Mb from 1,683 contigs representing potential contaminant se-
quences were removed along with the mtDNA contigs from the fi-
nal nuclear genome assembly. Despite its level of fragmentation
into numerous contigs, the completeness estimate using BUSCO
indicated that the genome is complete (98.3%) and has no frag-
mented BUSCO genes (0.0%). The only other existing genome of a
congeneric species, C. (Mesocarabus) problematicus (Herbst, 1786)
(GCA_963422195.1), was sequenced using PacBio technology
from a specimen preservedin liquid nitrogen immediately preced-
ing extraction at the sequencing facility. Such ideal preservation
conditions are understandably difficult to replicate with nonmo-
del and/or nonlocal organisms. This latter genome is composed
of 222 scaffolds having a total size of 254 Mb, an N50 of 17.5 Mb,
and a BUSCO completeness of 99.2%. In comparison with the lim-
ited existing genomic resources for the Adephaga clade, the de-
scriptive statistics for the newly generated C. depressus genome
highlight its value as a draft reference genome. This genome is
suitable for population-scale resequencing studies (Formenti
et al. 2022). Additionally, its completeness and gene annotations
make it well suited for comparative genomic analyses (Dunn and
Munro 2016).

BUSCO phylogenomic inference

Amedian of 1,334 BUSCO genes were recovered from the different
targeted Adephaga genomes (min. 1,260, max. 1,360). The final
alignment used for phylogenetic inference was composed of
1,367 BUSCO genes and contained 853,423 parsimony-informative
sites. ModelFinder recovered 104 partitions for ML phylogenetic
inference. The resulting phylogenetic tree is robust, with maximal
branch support (SH-aLRT = 100/UFBoot = 100) across the topology
(Fig. 2b). As expected, we recover the newly sequenced genome of
C. depressus as sister to that of C. problematicus, thereby forming a
monophyletic genus Carabus. Where multiple representative sam-
ples were included, we also recovered all subfamilies of Carabidae
as monophyletic. Notably, the subfamily Nebriinae was recovered
as sister to Carabinae—a result consistent with that of the study
by Vasilikopoulos et al. (2021). Despite the limited taxon sampling
in this study, our robust phylogenomic inference based on refer-
ence genomes is consistent with recent studies. The new refer-
ence genome is a significant contribution to advancing our
understanding of ground beetle evolution.

Gene structural annotation

The structural annotation performed using BRAKER3 and combin-
ing hints from Coleoptera proteins and RNA-seq data resulted in
the annotation of 17,224 genes (Supplementary Table 1). The com-
pleteness evaluation performed using BUSCO on the resulting pro-
teins identified 87.6% of complete genes (84.4% of single-copy and
3.2% of duplicated). The number of annotated genes is consistent
with the literature: according to data extracted from the
Arthropoda Assembly Assessment Catalogue, among the 50 existing
annotations of coleopteran genomes, the average number of genes
identified is 20,005 (SD =7,872) (Feron and Waterhouse 2022).

Data availability

Genome assembly and annotation have been made available in
the NCBI under JBLKVO000000000 accession number. The annota-
tion is also available at GSA Figshare: https://doi.org/10.25387/g3.

28652057. Raw genomic data can be found under NCBI BioProjects

PRJNA1171461. The assembly and annotation pipelines, including

custom scripts, have been made available in the Github reposi-

tory: https:/github.com/crcardenas/CBX1139_genome.
Supplemental material available at G3 online.
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